Equivalent circuit modeling of the dynamic operation of ultra-high speed multi-mode VCSELs

Author(s):  
Marwan Bou Sanayeh ◽  
Elio Nakhle ◽  
Oliver Daou ◽  
Wissam Hamad ◽  
Mustapha Hamad ◽  
...  
Author(s):  
Bassel Aboul Hosn ◽  
Rami Yehia ◽  
Vana Ajemian ◽  
Eliane Zouein ◽  
Marwan Bou Sanayeh ◽  
...  

Author(s):  
Amirreza Aghakhani ◽  
Ipek Basdogan ◽  
Alper Erturk

The equivalent circuit modeling of the vibration-based energy harvesters for accurate estimation of electrical response has drawn much attention over the recent years. Different methods have been proposed to obtain the equivalent circuit parameters using analytical and finite element models of the piezoelectric energy harvesters. In such methods, the structure is a typical cantilever beam with piezoelectric layers under base excitation. As an alternative to beams, piezoelectric patch-based harvesters attached to thin plates can be considered due to the wide use of plate-like structures in automotive, marine and aerospace applications. Considering these needs, a multi-mode equivalent circuit model of a piezoelectric energy harvester integrated to a thin plate is developed in this study. Equivalent circuit parameters are obtained from analytical distributed-parameter model of the harvester which covers the electromechanical coupling behavior of the piezoelectric patch and vibration of the host plate. The multi-mode circuit representation of the harvester is built via electronic circuit simulation software SPICE. Using the SPICE software, electrical outputs of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are then validated for the standard AC-AC and AC-DC configurations. For the AC configuration, voltage Frequency Response Functions (FRFs) are calculated for various resistive loads and they exhibit excellent agreement with the published analytical closed-form solution. For the full-wave rectifier configuration, simulation results of the DC voltage and power outputs are calculated for a wide range of load resistance values and compared with the analytical single-mode expression of the harvester in the literature.


2018 ◽  
Vol 60 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Shuai Jin ◽  
Dazhao Liu ◽  
Bichen Chen ◽  
Rick Brooks ◽  
Kelvin Qiu ◽  
...  

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Saima Hasan ◽  
Abbas Z. Kouzani ◽  
M A Parvez Mahmud

This paper presents a simple and comprehensive model of a dual-gate graphene field effect transistor (FET). The quantum capacitance and surface potential dependence on the top-gate-to-source voltage were studied for monolayer and bilayer graphene channel by using equivalent circuit modeling. Additionally, the closed-form analytical equations for the drain current and drain-to-source voltage dependence on the drain current were investigated. The distribution of drain current with voltages in three regions (triode, unipolar saturation, and ambipolar) was plotted. The modeling results exhibited better output characteristics, transfer function, and transconductance behavior for GFET compared to FETs. The transconductance estimation as a function of gate voltage for different drain-to-source voltages depicted a proportional relationship; however, with the increase of gate voltage this value tended to decline. In the case of transit frequency response, a decrease in channel length resulted in an increase in transit frequency. The threshold voltage dependence on back-gate-source voltage for different dielectrics demonstrated an inverse relationship between the two. The analytical expressions and their implementation through graphical representation for a bilayer graphene channel will be extended to a multilayer channel in the future to improve the device performance.


Sign in / Sign up

Export Citation Format

Share Document