Smart Air Quality Network for spatial high-resolution monitoring in urban area

Author(s):  
Klaus Schäfer ◽  
Matthias Budde ◽  
Josef Cyrys ◽  
Stefan Emeis ◽  
Thomas Gratza ◽  
...  
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 640
Author(s):  
Olivier Oldrini ◽  
Patrick Armand ◽  
Christophe Duchenne ◽  
Sylvie Perdriel ◽  
Maxime Nibart

Accidental or malicious releases in the atmosphere are more likely to occur in built-up areas, where flow and dispersion are complex. The EMERGENCIES project aims to demonstrate the operational feasibility of three-dimensional simulation as a support tool for emergency teams and first responders. The simulation domain covers a gigantic urban area around Paris, France, and uses high-resolution metric grids. It relies on the PMSS modeling system to model the flow and dispersion over this gigantic domain and on the Code_Saturne model to simulate both the close vicinity and the inside of several buildings of interest. The accelerated time is achieved through the parallel algorithms of the models. Calculations rely on a two-step approach: the flow is computed in advance using meteorological forecasts, and then on-demand release scenarios are performed. Results obtained with actual meteorological mesoscale data and realistic releases occurring both inside and outside of buildings are presented and discussed. They prove the feasibility of operational use by emergency teams in cases of atmospheric release of hazardous materials.


2018 ◽  
Author(s):  
Matthias Karl

Abstract. This paper describes the City-scale Chemistry (CityChem) extension of the urban dispersion model EPISODE with the aim to enable chemistry/transport simulations of multiple reactive pollutants on urban scales. The new model is called CityChem-EPISODE. The primary focus is on the simulation of urban ozone concentrations. Ozone is produced in photochemical reaction cycles involving nitrogen oxides (NOx) and volatile organic compounds (VOC) emitted by various anthropogenic activities in the urban area. The performance of the new model was evaluated with a series of synthetic tests and with a first application to the air quality situation in the city of Hamburg, Germany. The model performs fairly well for ozone in terms of temporal correlation and bias at the air quality monitoring stations in Hamburg. In summer afternoons, when photochemical activity is highest, modelled median ozone at an inner-city urban background station was about 30 % lower than the observed median ozone. Inaccuracy of the computed photolysis frequency of nitrogen dioxide (NO2) is the most probable explanation for this. CityChem-EPISODE reproduces the spatial variation of annual mean NO2 concentrations between urban background, traffic and industrial stations. However, the temporal correlation between modelled and observed hourly NO2 concentrations is weak for some of the stations. For daily mean PM10, the performance of CityChem-EPISODE is moderate due to low temporal correlation. The low correlation is linked to uncertainties in the seasonal cycle of the anthropogenic particulate matter (PM) emissions within the urban area. Missing emissions from domestic heating might be an explanation for the too low modelled PM10 in winter months. Four areas of need for improvement have been identified: (1) dry and wet deposition fluxes; (2) treatment of photochemistry in the urban atmosphere; (3) formation of secondary inorganic aerosol (SIA); and (4) formation of biogenic and anthropogenic secondary organic aerosol (SOA). The inclusion of secondary aerosol formation will allow for a better sectorial attribution of observed PM levels. Envisaged applications of the CityChem-EPISODE model are urban air quality studies, environmental impact assessment, sensitivity analysis of sector-specific emission and the assessment of local and regional emission abatement policy options.


2014 ◽  
Vol 14 (20) ◽  
pp. 10963-10976 ◽  
Author(s):  
J. J. P. Kuenen ◽  
A. J. H. Visschedijk ◽  
M. Jozwicka ◽  
H. A. C. Denier van der Gon

Abstract. Emissions to air are reported by countries to EMEP. The emissions data are used for country compliance checking with EU emission ceilings and associated emission reductions. The emissions data are also necessary as input for air quality modelling. The quality of these "official" emissions varies across Europe. As alternative to these official emissions, a spatially explicit high-resolution emission inventory (7 × 7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air pollutants was made. The primary goal was to supply air quality modellers with the input they need. The inventory was constructed by using the reported emission national totals by sector where the quality is sufficient. The reported data were analysed by sector in detail, and completed with alternative emission estimates as needed. This resulted in a complete emission inventory for all countries. For particulate matter, for each source emissions have been split in coarse and fine particulate matter, and further disaggregated to EC, OC, SO4, Na and other minerals using fractions based on the literature. Doing this at the most detailed sectoral level in the database implies that a consistent set was obtained across Europe. This allows better comparisons with observational data which can, through feedback, help to further identify uncertain sources and/or support emission inventory improvements for this highly uncertain pollutant. The resulting emission data set was spatially distributed consistently across all countries by using proxy parameters. Point sources were spatially distributed using the specific location of the point source. The spatial distribution for the point sources was made year-specific. The TNO-MACC_II is an update of the TNO-MACC emission data set. Major updates included the time extension towards 2009, use of the latest available reported data (including updates and corrections made until early 2012) and updates in distribution maps.


2013 ◽  
Vol 13 (20) ◽  
pp. 10461-10482 ◽  
Author(s):  
J. R. Brook ◽  
P. A. Makar ◽  
D. M. L. Sills ◽  
K. L. Hayden ◽  
R. McLaren

Abstract. This paper serves as an overview and discusses the main findings from the Border Air Quality and Meteorology Study (BAQS-Met) in southwestern Ontario in 2007. This region is dominated by the Great Lakes, shares borders with the United States and consistently experiences the highest ozone (O3) and fine particulate matter concentrations in Canada. The purpose of BAQS-Met was to improve our understanding of how lake-driven meteorology impacts air quality in the region, and to improve models used for forecasting and policy scenarios. Results show that lake breeze occurrence frequencies and inland penetration distances were significantly greater than realized in the past. Due to their effect on local meteorology, the lakes were found to enhance secondary O3 and aerosol formation such that local anthropogenic emissions have their impact closer to the populated source areas than would otherwise occur in the absence of the lakes. Substantial spatial heterogeneity in O3 was observed with local peaks typically 30 ppb above the regional values. Sulfate and secondary organic aerosol (SOA) enhancements were also linked to local emissions being transported in the lake breeze circulations. This study included the first detailed evaluation of regional applications of a high-resolution (2.5 km grid) air quality model in the Great Lakes region. The model showed that maxima in secondary pollutants occur in areas of convergence, in localized updrafts and in distinct pockets over the lake surfaces. These effects are caused by lake circulations interacting with the synoptic flow, with each other or with circulations induced by urban heat islands. Biogenic and anthropogenic emissions were both shown to play a role in the formation of SOA in the region. Detailed particle measurements and multivariate receptor models reveal that while individual particles are internally mixed, they often exist within more complex external mixtures. This makes it difficult to predict aerosol optical properties and further highlights the challenges facing aerosol modelling. The BAQS-Met study has led to a better understanding of the value of high-resolution (2.5 km) modelling for air quality and meteorological predictions and has led to several model improvements.


Sign in / Sign up

Export Citation Format

Share Document