Application of thermal infrared band for landcover/landuse and temperature study as an indicator urban climate change in Yogyakarta

Author(s):  
Retnadi Heru Jatmiko
Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


2020 ◽  
Vol 45 (1) ◽  
pp. 411-444 ◽  
Author(s):  
Valéry Masson ◽  
Aude Lemonsu ◽  
Julia Hidalgo ◽  
James Voogt

Cities are particularly vulnerable to extreme weather episodes, which are expected to increase with climate change. Cities also influence their own local climate, for example, through the relative warming known as the urban heat island (UHI) effect. This review discusses urban climate features (even in complex terrain) and processes. We then present state-of-the-art methodologies on the generalization of a common urban neighborhood classification for UHI studies, as well as recent developments in observation systems and crowdsourcing approaches. We discuss new modeling paradigms pertinent to climate impact studies, with a focus on building energetics and urban vegetation. In combination with regional climate modeling, new methods benefit the variety of climate scenarios and models to provide pertinent information at urban scale. Finally, this article presents how recent research in urban climatology contributes to the global agenda on cities and climate change.


2021 ◽  
Author(s):  
Joachim Fallmann ◽  
Hans Schipper ◽  
Stefan Emeis ◽  
Marc Barra ◽  
Holger Tost

<p>With more and more people residing in cities globally, urban areas are particularly vulnerable to climate change. It is therefore important, that the principles of climate-resilient city planning are reflected in the planning phase already. A discussion of adaptation measures requires a holistic understanding of the complex urban environment, and necessarily has to involve cross-scale interactions, both spatially and temporally. This work examines the term “Smart City” with regard to its suitability for the definition of sustainable urban planning based on urban climate studies over the past decade and own modelling work. Existing literature is assessed from a meteorological perspective in order to answer the question how results from these studies can be linked to architectural design of future urban areas. It has been long understood that measures such as urban greening, or so-called "Nature Based Solutions", are able to dampen excess heat and help reducing energetic costs. As numerous studies show however, integrating vegetation in the urban landscape shares a double role in regional adaptation to climate change due to both cooling effect and air pollution control. Using the state-of-the-art chemical transport model MECO(n) coupled to the urban canopy parametrisation TERRA_URB, we simulated a case study for the Rhine-Main metropolitan region in Germany, highlighting mutual unwanted relationships in modern city planning. Hence, we oppose the so-called compact city approach to an urban greening scenario with regard to the potential for both heat island mitigation and air quality.</p>


Author(s):  
S. Lagüela ◽  
M. Gesto ◽  
B. Riveiro ◽  
D. González-Aguilera

Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms.<br><br> This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.


2021 ◽  
Vol 893 (1) ◽  
pp. 012068
Author(s):  
K I N Rahmi ◽  
N Febrianti ◽  
I Prasasti

Abstract Forest/land fire give bad impact of heavy smoke on peatland area in Indonesia. Forest/land fire smoke need to be identified the distribution periodically. New satellite of GCOM-C has been launched to monitor climate condition and have visible, near infrared and thermal infrared. This study has objective to identify fire smoke from GCOM-C data. GCOM-C data has wavelength range from 0.38 to 12 μm it covers visible, near infrared, short-wave infrared and thermal infrared. It is relatively similar to MODIS or Himawari-8 images which could identify forest/land fire smoke. The methodology is visual interpretation to detect forest/land fire smoke using near infrared band (VN08), shortwave infrared band (SW03), and thermal bands (T01 and T02). Hotspot data is overlaid with GCOM-C image to represent the location of fire events. Combination of composite RGB image has been applied to detect forest/land fire smoke. GCOM-C image of VN8 bands and combination of thermal band in composite image could be used to detect fire smoke in Pulang Pisau, Central Kalimantan.


Author(s):  
Audrey de Nazelle ◽  
Charlotte J. Roscoe ◽  
Aina Roca-Barcelό ◽  
Giselle Sebag ◽  
Gudrun Weinmayr ◽  
...  

Motivated by a growing recognition of the climate emergency, reflected in the 26th Conference of the Parties (COP26), we outline untapped opportunities to improve health through ambitious climate actions in cities. Health is a primary reason for climate action yet is rarely integrated in urban climate plans as a policy goal. This is a missed opportunity to create sustainable alliances across sectors and groups, to engage a broad set of stakeholders, and to develop structural health promotion. In this statement, we first briefly review the literature on health co-benefits of urban climate change strategies and make the case for health-promoting climate action; we then describe barriers to integrating health in climate action. We found that the evidence-base is often insufficiently policy-relevant to be impactful. Research rarely integrates the complexity of real-world systems, including multiple and dynamic impacts of strategies, and consideration of how decision-making processes contend with competing interests and short-term electoral cycles. Due to siloed-thinking and restrictive funding opportunities, research often falls short of the type of evidence that would be most useful for decision-making, and research outputs can be cryptic to decision makers. As a way forward, we urge researchers and stakeholders to engage in co-production and systems thinking approaches. Partnering across sectors and disciplines is urgently needed so pathways to climate change mitigation and adaptation fully embrace their health-promoting potential and engage society towards the huge transformations needed. This commentary is endorsed by the International Society for Environmental Epidemiology (ISEE) and the International Society for Urban Health (ISUH) and accompanies a sister statement oriented towards stakeholders (published on the societies’ websites).


Sign in / Sign up

Export Citation Format

Share Document