Excitons, biexcitons, and stimulated emission in wide gap II-VI quantum wells

1996 ◽  
Author(s):  
Fritz Henneberger ◽  
Joachim Puls ◽  
T. Hauepl ◽  
Frank Kreller ◽  
Martin Lowisch ◽  
...  
1996 ◽  
Vol 76 (11) ◽  
pp. 1982-1982 ◽  
Author(s):  
F. Kreller ◽  
M. Lowisch ◽  
J. Puls ◽  
F. Henneberger

1995 ◽  
Vol 75 (12) ◽  
pp. 2420-2423 ◽  
Author(s):  
F. Kreller ◽  
M. Lowisch ◽  
J. Puls ◽  
F. Henneberger

1995 ◽  
Vol 395 ◽  
Author(s):  
D.A.S. Loeber ◽  
J.M. Redwing ◽  
N.G. Anderson ◽  
M.A. Tischler

ABSTRACTEdge emission characteristics of optically pumped GaN-AlGaN double heterostructures and quantum wells are examined. The samples, which were grown by metalorganic vapor phase epitaxy, are photoexcited with light from a pulsed nitrogen laser. The pump light is focused to a narrow stripe on the sample surface, oriented perpendicular to a cleaved edge, and the edge luminescence is collected and analyzed. We first compare emission characteristics of highly excited GaN-AlGaN double heterostructures grown simultaneously on SiC and sapphire substrates. Polarization resolved spectral properties of edge luminescence from both structures is studied as a function of pump intensity and excitation stripe length. Characteristics indicative of stimulated emission are observed, particularly in the sample grown on SiC. We then present results demonstrating laser emission from a GaN-AlGaN separate-confinement quantum-well heterostructure. At high pump intensities, band edge emission from the quantum well exhibits five narrow (∼1 Å) modes which are evenly spaced by 10Å to within the resolution of the spectrometer. This represents the first demonstration of laser action in a GaN-based quantum-well structure.


2011 ◽  
Vol 4 (8) ◽  
pp. 082103 ◽  
Author(s):  
Mohamed Lachab ◽  
Krishnan Balakrishnan ◽  
Bin Zhang ◽  
Joe Dion ◽  
Qhalid Fareed ◽  
...  

1998 ◽  
Vol 264-268 ◽  
pp. 1433-1436
Author(s):  
L. Calcagnile ◽  
G. Coli ◽  
D. Rinaldi ◽  
R. Cingolani ◽  
H. Tang ◽  
...  

2020 ◽  
Vol 49 (4) ◽  
pp. 2326-2331
Author(s):  
Ping Chen ◽  
Young Jae Park ◽  
Yuh-Shiuan Liu ◽  
Theeradetch Detchprohm ◽  
P. Douglas Yoder ◽  
...  

AbstractThe thermal effect of the growth temperature on interface morphology and stimulated emission in ultraviolet AlGaN/InGaN multiple quantum wells (MQWs) are experimentally investigated. During the MOCVD epitaxial growth of AlGaN/InGaN MQWs, the ramping rate from a lower temperature for InGaN quantum wells (QWs) to a higher one for AlGaN quantum barriers (QBs) is intentionally changed from 1.0°C/s to 4.0°C/s. Atomic force microscopy images show that the surface morphology of InGaN QWs, which is improved by a thermal effect when the growth temperature rises to the set value of the AlGaN QBs, varies with different temperature ramping rates. The results of stimulated emission indicate that the threshold pumping power density of MQWs is decreased with increasing temperature ramping rate from 1.0°C/s to 3.0°C/s and then slightly increased when the ramping rate is 4.0°C/s. This phenomenon is believed to result from the thermal degradation effect during the temperature ramp step. A long-time high-temperature annealing will reduce the density of indium-rich microstructures as well as the corresponding localized state density, which is assumed to contribute to the radiative recombination in the InGaN QWs. Given the great difference between optimal growth temperatures for AlGaN and InGaN layers, a higher ramping rate would be more appropriate for the growth of ultraviolet AlGaN/InGaN MQWs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dongha Yoo ◽  
Keundong Lee ◽  
Youngbin Tchoe ◽  
Puspendu Guha ◽  
Asad Ali ◽  
...  

AbstractThis paper describes the fabrication process and characteristics of dimension- and position-controlled gallium nitride (GaN) microstructure arrays grown on graphene films and their quantum structures for use in flexible light-emitting device applications. The characteristics of dimension- and position-controlled growth, which is crucial to fabricate high-performance electronic and optoelectronic devices, were investigated using scanning and transmission electron microscopes and power-dependent photoluminescence spectroscopy measurements. Among the GaN microstructures, GaN microrods exhibited excellent photoluminescence characteristics including room-temperature stimulated emission, which is especially useful for optoelectronic device applications. As one of the device applications of the position-controlled GaN microrod arrays, we fabricated light-emitting diodes (LEDs) by heteroepitaxially growing InxGa1−xN/GaN multiple quantum wells (MQWs) and a p-type GaN layer on the surfaces of GaN microrods and by depositing Ti/Au and Ni/Au metal layers to prepare n-type and p-type ohmic contacts, respectively. Furthermore, the GaN microrod LED arrays were transferred onto Cu foil by using the chemical lift-off method. Even after being transferred onto the flexible Cu foil substrate, the microrod LEDs exhibited strong emission of visible blue light. The proposed method to enable the dimension- and position-controlled growth of GaN microstructures on graphene films can likely be used to fabricate other high-quality flexible inorganic semiconductor devices such as micro-LED displays with an ultrahigh resolution.


2019 ◽  
Vol 49 (6) ◽  
pp. 535-539
Author(s):  
E V Lutsenko ◽  
M V Rzheutski ◽  
A V Nagorny ◽  
A V Danilchyk ◽  
D V Nechaev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document