scholarly journals Spatiotemporal dynamics of molecular messaging in bacterial co-cultures studied by multimodal chemical imaging

Author(s):  
Tianyuan Cao ◽  
Nydia Morales-Soto ◽  
Jin Jia ◽  
Nameera Baig ◽  
Sage Dunham ◽  
...  
2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


Author(s):  
Ekaterina Maksimova ◽  
Ekaterina Maksimova ◽  
Vladimir Zhigulsky ◽  
Vladimir Zhigulsky ◽  
Vladimir Shuisky ◽  
...  

The macrophyte thicket ecosystems of higher aquatic vegetation in the Neva Bay (NB) and Eastern Gulf of Finland (EGoF) perform many important roles, including acting as the habitats, nesting sites and migration sites for aquatic and semi-aquatic birds, creating the specific conditions necessary for the spawning and growth of many species of fish, and taking part in the self-purification of the aquatic ecosystems. Many anthropogenic disturbances, hydraulic works in particular, have a significant negative impact on these macrophyte thicket ecosystems. In recent years, the active growth of a new type of macrophyte thicket has been observed in the NB. This is due to the aftereffects of the construction of the Saint Petersburg Flood Prevention Facility Complex (FPFC). It is quite likely that the total macrophyte thicket area in these waters is currently increasing. In the future, it will be necessary to assess the environmental impacts of the hydraulic works on the macrophyte thicket of the NB and EGoF, taking into account the background processes of the spatiotemporal dynamics of the reed beds in the waters in question. To do this, it will be necessary to carry out a comprehensive study of these ecosystems and identify patterns in their spatial and temporal dynamics. The program of the study has been developed and is currently being implemented by Eco-Express-Service, a St. Petersburg eco-design company.


Sign in / Sign up

Export Citation Format

Share Document