Spatiotemporal Dynamics of Natural and Unnatural Face Changes Revealed Through Event-Related Brain Potentials

Author(s):  
Luc Boutsen ◽  
Tracy Warbrick ◽  
Glyn W. Humphreys
2019 ◽  
Vol 33 (2) ◽  
pp. 109-118
Author(s):  
Andrés Antonio González-Garrido ◽  
Jacobo José Brofman-Epelbaum ◽  
Fabiola Reveca Gómez-Velázquez ◽  
Sebastián Agustín Balart-Sánchez ◽  
Julieta Ramos-Loyo

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.


2002 ◽  
Vol 16 (3) ◽  
pp. 129-149 ◽  
Author(s):  
Boris Kotchoubey

Abstract Most cognitive psychophysiological studies assume (1) that there is a chain of (partially overlapping) cognitive processes (processing stages, mechanisms, operators) leading from stimulus to response, and (2) that components of event-related brain potentials (ERPs) may be regarded as manifestations of these processing stages. What is usually discussed is which particular processing mechanisms are related to some particular component, but not whether such a relationship exists at all. Alternatively, from the point of view of noncognitive (e. g., “naturalistic”) theories of perception ERP components might be conceived of as correlates of extraction of the information from the experimental environment. In a series of experiments, the author attempted to separate these two accounts, i. e., internal variables like mental operations or cognitive parameters versus external variables like information content of stimulation. Whenever this separation could be performed, the latter factor proved to significantly affect ERP amplitudes, whereas the former did not. These data indicate that ERPs cannot be unequivocally linked to processing mechanisms postulated by cognitive models of perception. Therefore, they cannot be regarded as support for these models.


2016 ◽  
Vol 30 (3) ◽  
pp. 102-113 ◽  
Author(s):  
Chun-Hao Wang ◽  
Chun-Ming Shih ◽  
Chia-Liang Tsai

Abstract. This study aimed to assess whether brain potentials have significant influences on the relationship between aerobic fitness and cognition. Behavioral and electroencephalographic (EEG) data was collected from 48 young adults when performing a Posner task. Higher aerobic fitness is related to faster reaction times (RTs) along with greater P3 amplitude and shorter P3 latency in the valid trials, after controlling for age and body mass index. Moreover, RTs were selectively related to P3 amplitude rather than P3 latency. Specifically, the bootstrap-based mediation model indicates that P3 amplitude mediates the relationship between fitness level and attention performance. Possible explanations regarding the relationships among aerobic fitness, cognitive performance, and brain potentials are discussed.


2012 ◽  
Vol 43 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Silvia Tomelleri ◽  
Luigi Castelli

In the present paper, relying on event-related brain potentials (ERPs), we investigated the automatic nature of gender categorization focusing on different stages of the ongoing process. In particular, we explored the degree to which gender categorization occurs automatically by manipulating the semantic vs. nonsemantic processing goals requested by the task (Study 1) and the complexity of the task itself (Study 2). Results of Study 1 highlighted the automatic nature of categorization at an early (N170) and on a later processing stage (P300). Findings of Study 2 showed that at an early stage categorization was automatically driven by the ease of extraction of category-based knowledge from faces while, at a later stage, categorization was more influenced by situational constrains.


Author(s):  
Gregory W. Lewis ◽  
Pat-Anthony Federico ◽  
Jeffrey N. Froning ◽  
Marlene Calder

Sign in / Sign up

Export Citation Format

Share Document