Application of machine learning on dental optical coherence tomography (Conference Presentation)

2019 ◽  
Author(s):  
Mei-Ru Chen ◽  
Tien-Yu Hsiao ◽  
Yi-Ching Ho ◽  
Chia-Wei Sun
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter M. Maloca ◽  
Philipp L. Müller ◽  
Aaron Y. Lee ◽  
Adnan Tufail ◽  
Konstantinos Balaskas ◽  
...  

AbstractMachine learning has greatly facilitated the analysis of medical data, while the internal operations usually remain intransparent. To better comprehend these opaque procedures, a convolutional neural network for optical coherence tomography image segmentation was enhanced with a Traceable Relevance Explainability (T-REX) technique. The proposed application was based on three components: ground truth generation by multiple graders, calculation of Hamming distances among graders and the machine learning algorithm, as well as a smart data visualization (‘neural recording’). An overall average variability of 1.75% between the human graders and the algorithm was found, slightly minor to 2.02% among human graders. The ambiguity in ground truth had noteworthy impact on machine learning results, which could be visualized. The convolutional neural network balanced between graders and allowed for modifiable predictions dependent on the compartment. Using the proposed T-REX setup, machine learning processes could be rendered more transparent and understandable, possibly leading to optimized applications.


2005 ◽  
Vol 46 (11) ◽  
pp. 4147 ◽  
Author(s):  
Zvia Burgansky-Eliash ◽  
Gadi Wollstein ◽  
Tianjiao Chu ◽  
Joseph D. Ramsey ◽  
Clark Glymour ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Thomas Kurmann ◽  
Siqing Yu ◽  
Pablo Márquez-Neila ◽  
Andreas Ebneter ◽  
Martin Zinkernagel ◽  
...  

Abstract In ophthalmology, retinal biological markers, or biomarkers, play a critical role in the management of chronic eye conditions and in the development of new therapeutics. While many imaging technologies used today can visualize these, Optical Coherence Tomography (OCT) is often the tool of choice due to its ability to image retinal structures in three dimensions at micrometer resolution. But with widespread use in clinical routine, and growing prevalence in chronic retinal conditions, the quantity of scans acquired worldwide is surpassing the capacity of retinal specialists to inspect these in meaningful ways. Instead, automated analysis of scans using machine learning algorithms provide a cost effective and reliable alternative to assist ophthalmologists in clinical routine and research. We present a machine learning method capable of consistently identifying a wide range of common retinal biomarkers from OCT scans. Our approach avoids the need for costly segmentation annotations and allows scans to be characterized by biomarker distributions. These can then be used to classify scans based on their underlying pathology in a device-independent way.


Sign in / Sign up

Export Citation Format

Share Document