Modeling PpIX-effective fluence rate in tissue for multiple light sources used in photodynamic therapy of skin (Conference Presentation)

Author(s):  
Ethan Philip M. LaRochelle ◽  
Kayla Marra ◽  
Robert E. LeBlanc ◽  
Michael S. Chapman ◽  
Edward V. Maytin ◽  
...  
2019 ◽  
Vol 1 (7) ◽  
pp. 19-23
Author(s):  
S. I. Surkichin ◽  
N. V. Gryazeva ◽  
L. S. Kholupova ◽  
N. V. Bochkova

The article provides an overview of the use of photodynamic therapy for photodamage of the skin. The causes, pathogenesis and clinical manifestations of skin photodamage are considered. The definition, principle of action of photodynamic therapy, including the sources of light used, the classification of photosensitizers and their main characteristics are given. Analyzed studies that show the effectiveness and comparative evaluation in the selection of various light sources and photosensitizing agents for photodynamic therapy in patients with clinical manifestations of photodamage.


Author(s):  
Patricia S.P. Thong ◽  
Malini Olivo ◽  
Kiang-Wei Kho ◽  
Ramaswamy Bhuvaneswari ◽  
William W. L. Chin ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 4290 ◽  
Author(s):  
Nasim Chiniforush ◽  
Maryam Pourhajibagher ◽  
Steven Parker ◽  
Stefano Benedicenti ◽  
Abbas Bahador ◽  
...  

The purpose of this study was to evaluate the in vitro effect of the chlorophyllin–phycocyanin mixture (Photoactive+) as a photosensitizer (PS) during antimicrobial photodynamic therapy (aPDT) on the count of Enterococcus faecalis (E. faecalis) using different light sources. The antimicrobial effect of aPDT with chlorophyllin–phycocyanin mixture using different light sources including diode laser (λ = 660 nm), diode laser (λ = 635 nm), LED (λ = 450 ± 30 nm) alone or in combination was assessed using microbial cell viability assay against E. faecalis. In addition, the cell cytotoxicity of Photoactive+ was assessed on human gingival fibroblast (HuGu) cells by MTT assay; E. faecalis growth when treated by both red wavelengths (635 nm, 660 nm) and combination of LED (420–480 nm) and red wavelengths (635 nm, 660 nm), significantly reduced compared to the control group (p < 0.05). There was no significant reduction in the number of viable cells exposed to Photoactive+ compared to the control group (p < 0.05). This study shows that the application of chlorophyllin–phycocyanin mixture and irradiation with emission of red light achieved a better result for bacterial count reduction, compared to a control. This component can be applied safely due to very negligible cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document