scholarly journals The Effect of Antimicrobial Photodynamic Therapy Using Chlorophyllin–Phycocyanin Mixture on Enterococcus faecalis: The Influence of Different Light Sources

2020 ◽  
Vol 10 (12) ◽  
pp. 4290 ◽  
Author(s):  
Nasim Chiniforush ◽  
Maryam Pourhajibagher ◽  
Steven Parker ◽  
Stefano Benedicenti ◽  
Abbas Bahador ◽  
...  

The purpose of this study was to evaluate the in vitro effect of the chlorophyllin–phycocyanin mixture (Photoactive+) as a photosensitizer (PS) during antimicrobial photodynamic therapy (aPDT) on the count of Enterococcus faecalis (E. faecalis) using different light sources. The antimicrobial effect of aPDT with chlorophyllin–phycocyanin mixture using different light sources including diode laser (λ = 660 nm), diode laser (λ = 635 nm), LED (λ = 450 ± 30 nm) alone or in combination was assessed using microbial cell viability assay against E. faecalis. In addition, the cell cytotoxicity of Photoactive+ was assessed on human gingival fibroblast (HuGu) cells by MTT assay; E. faecalis growth when treated by both red wavelengths (635 nm, 660 nm) and combination of LED (420–480 nm) and red wavelengths (635 nm, 660 nm), significantly reduced compared to the control group (p < 0.05). There was no significant reduction in the number of viable cells exposed to Photoactive+ compared to the control group (p < 0.05). This study shows that the application of chlorophyllin–phycocyanin mixture and irradiation with emission of red light achieved a better result for bacterial count reduction, compared to a control. This component can be applied safely due to very negligible cytotoxicity.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shima Afrasiabi ◽  
Maryam Pourhajibagher ◽  
Nasim Chiniforush ◽  
Abbas Bahador

Abstract Less invasive removal approaches have been recommended for deep caries lesions. Antimicrobial photodynamic therapy (aPDT) and propolis nanoparticle (PNP) are highlighted for the caries management plan. Evidence is lacking for an additive effect of combination PNP with photosensitizer (PS) in aPDT. This study aimed to investigate the individual and synergistic effects of chlorophyllin-phycocyanin mixture (PhotoActive+) and toluidine blue O (TBO) as PSs in combination with PNP in the aPDT process (aPDTplus) against major important virulence factors of Streptococcus mutans. Following characterization, biocompatibility of the PSs alone, or in combination with PNP were investigated on human gingival fibroblast cell. The in vitro synergy of PhotoActive+ or TBO and PNP was evaluated by the checkerboard method. The bacteria's virulence properties were surveyed in the presence of the PSs, individually as well as in combination. When the PSs were examined in combination (synergistic effect, FIC Index < 0.5), a stronger growth inhibitory activity was exhibited than the individual PSs. The biofilm formation, as well as genes involved in biofilm formation, showed greater suppression when the PSs were employed in combination. Overall, the results of this study suggest that the combination of PhotoActive+ or TBO with PNP with the least cytotoxicity effects and the highest antimicrobial activites would improve aPDT outcomes, leading to synergistic effects and impairing the virulence of S. mutans.


2020 ◽  
Vol 10 (8) ◽  
pp. 2925
Author(s):  
Gianluca Tenore ◽  
Gaspare Palaia ◽  
Guido Migliau ◽  
Ahmed Mohsen ◽  
Federica Rocchetti ◽  
...  

The study aimed to evaluate the antimicrobial effect of photodynamic therapy (PDT) with the use of Toluidine Blue (TB) on extracted teeth infected with biofilms of Enterococcus faecalis. Fifty-four extracted teeth with single-roots and single canals were mechanically shaped, autoclaved, and contaminated with E. faecalis. They were randomly divided into six groups: two groups were negative and positive control groups, two groups were subjected to mechanical instrumentation and PDT with different pre-irradiation times and irradiation times, and two groups were subjected to chemo-mechanical endodontic treatment and PDT with different pre-irradiation times and irradiation times. In PDT groups, after the application of TB, the canals were irradiated with a diode laser of wavelength 635 nm, with a fiber diameter of 200 μm and 100 mW of power in continuous mode. The bacterial load was evaluated using a BioTimer Assay protocol. The greatest reduction of bacterial load was observed in groups of combined PDT with chemo-mechanical treatment. The reductions of bacterial load in groups of combined PDT with chemo-mechanical treatment, and in the positive control group, were significant (p < 0.01) when compared to that of the negative control group. Photodynamic therapy as an adjunctive modality may improve the disinfection capacity of conventional endodontic treatment against E. faecalis.


Folia Medica ◽  
2020 ◽  
Vol 62 (2) ◽  
pp. 314-323
Author(s):  
Maryam Pourhajibagher ◽  
Samira Gharesi ◽  
Nasim Chiniforush ◽  
Abbas Bahador

Background: Antimicrobial photothermal/photodynamic therapy (PTT/PDT) with indocyanine green (ICG) is an adjuvant therapeutic approach in the treatment of periodontitis. To explore whether PTT/PDT with ICG causes cell death by apoptosis in human gingival fibroblast (HGF) cells, BAX and BCL-2 genes expression as key events for apoptosis were evaluated in this study. Materials and methods: HGF cells were treated with: 1) different concentrations (500&ndash;2000 &micro;g/mL) of ICG alone, 2) Diode laser irradiation alone with a fluency of 39.06 J/cm2; 3) PTT/PDT combined different concentrations (500&ndash;2000 &micro;g/mL) of ICG with an 808 nm diode laser with a fluency of 39.06 J/cm2, and 4) controls (untreated cells). After that, BAX and BCL-2 messenger RNA levels were evaluated by real-time quantitative reverse transcription PCR. Results: PTT/PDT with 500 &micro;g/mL of ICG caused significant increases in the expression of the BAX gene, with an 8.5-fold increase, which was approximately 7- and 8.5-fold higher than PTT/PDT with ICG for 1500 and 2000 &micro;g/mL of ICG, respectively, indicating induction of apoptosis in HGF cells. ICG (in different test concentrations), diode laser, and PTT/PDT with ICG (1500 and 2000 &micro;g/mL of ICG) treatment displayed insignificant increases in expression levels of BAX (all p>0.05). Our experiments showed an insignificant increase (1.1&ndash;1.6-fold) in the expression of BCL-2 after ICG, diode laser, and PTT/PDT with ICG treatment (all p>0.05). Conclusions: This study suggests that various concentration of ICG can be the diverse expression of BAX responses to PTT/PDT on HGF cells.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chu-nan Zhang ◽  
Lin-yi Zhou ◽  
Shu-jiao Qian ◽  
Ying-xin Gu ◽  
Jun-yu Shi ◽  
...  

Abstract Objectives This study aims to evaluate the ability of tantalum-coated titanium to improve human gingival fibroblasts’ adhesion, viability, proliferation, migration performance, and the potential molecular mechanisms. Materials and methods Titanium plates were divided into two groups: (1) no coating (Ti, control), (2) Tantalum-coated titanium (Ta-coated Ti). All samples were characterized by scanning electronic microscopy, surface roughness, and hydrophilicity. Fibroblasts’ performance were analyzed by attached cell number at 1 h, 4 h, and 24 h, morphology at 1 h and 4 h, viability at 1 day, 3 days, 5 days, and 7 days, recovery after wounding at 6 h, 12 h, and 24 h. RT-PCR, western blot were applied to detect attachment-related genes’ expression and protein synthesis at 4 h and 24 h. Student’s t test was used for statistical analysis. Results Tantalum-coated titanium demonstrates a layer of homogeneously distributed nano-grains with mean diameter of 25.98 (± 14.75) nm. It was found that after tantalum deposition, human gingival fibroblasts (HGFs) adhesion, viability, proliferation, and migration were promoted in comparison to the control group. An upregulated level of Integrin β1 and FAK signaling was also detected, which might be the underlying mechanism. Conclusion In the present study, adhesion, viability, proliferation, migration of human gingival fibroblasts are promoted on tantalum-coated titanium, upregulated integrin β1 and FAK might contribute to its superior performance, indicating tantalum coating can be applied in transmucosal part of dental implant. Clinical significance Tantalum deposition on titanium surfaces can promote human gingival fibroblast adhesion, accordingly forming a well-organized soft tissue sealing and may contribute to a successful osseointegration.


2021 ◽  
Author(s):  
Maryam Pourhajibagher ◽  
Abbas Bahador

Abstract The aim of this study was to evaluate the anti-biofilm and anti-metabolic activities of zeolite-zinc oxide nanoparticles (Zeo\ZnONPs)-based antimicrobial photodynamic therapy (aPDT) against pre-formed polymicrobial biofilms on the orthodontic brackets, as well as, assess the remineralization efficacy on polymicrobial biofilms induced enamel lesions. Following synthesis and characterization of Zeo\ZnONPs, cell cytotoxicity, hemolytic effect, and intracellular reactive oxygen species (ROS) production were determined. The anti-biofilm and anti-metabolic activities of aPDT using different concentrations of Zeo\ZnONPs were investigated. Microhardness tester and DIAGNOdent Pen were used to evaluate the changes of remineralization degree on the treated enamel slabs duration one and three months. No significant cytotoxicity and erythrocyte hemolysis were observed in treated cells with Ze\ZnONPs. When irradiated, suggesting that the Ze\ZnONPs were photoactivated, generating ROS and leading to reduce dose-dependently the cell viability and metabolic activity of polymicrobial biofilms. Also, the enamel surface microhardness value of exposed enamel showed a steady increase with the concentration of Zeo\ZnONPs. No statistically significant differences were shown between aPDT and sodium fluoride varnish as the control group. Overall, Zeo\ZnONPs-based aPDT with the greatest remineralization efficacy of enamel surface can be used as an anti-biofilm therapeutic method, which is involved with their potent ability to produce ROS.


Author(s):  
Giuliana Campos Chaves Lamarque ◽  
Daniela Alejandra Cusicanqui Méndez ◽  
Adriana Arruda Matos ◽  
Thiago José Dionísio ◽  
Maria Aparecida Andrade Moreira Machado ◽  
...  

In Vivo ◽  
2018 ◽  
Vol 32 (4) ◽  
pp. 707-712 ◽  
Author(s):  
YOSHIKO MASUDA ◽  
HIROSHI SAKAGAMI ◽  
MASASHI HORIIKE ◽  
HIROSHI KADOKURA ◽  
TAKAHIDE YAMASAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document