High precision interferometric measurement of freeform surfaces from the well-defined sub-aperture surface profiles

Optifab 2019 ◽  
2019 ◽  
Author(s):  
Sangwon Hyun ◽  
Soonkyu Je ◽  
Geon-Hee Kim
2013 ◽  
Author(s):  
Chris Supranowitz ◽  
Paul Dumas ◽  
Tobias Nitzsche ◽  
Jessica DeGroote Nelson ◽  
Brandon Light ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 554
Author(s):  
Li Miao ◽  
Linlin Zhu ◽  
Changshuai Fang ◽  
Ning Yan ◽  
Xudong Yang ◽  
...  

Profile measurement is a key technical enabler in the manufacturing of highly curved freeform surfaces due to their complex geometrical shape. A current optical probe was used to measure nearly rotary freeform surfaces with the help of one rotation axis, because the probe needs to measure along the normal vector of the surface under the limitation of the numerical aperture (NA). This kind of measuring system generally has a high cost due to the high-precision, multi-axis platform. In this paper, we propose a low-cost, dual-axis rotation scanning method for a highly curved freeform surface with an arbitrary shape. The optical probe can scan the surface profile while always keeping consistent with the normal vector of the measuring points with the help of the double rotation axis. This method can adapt to the changes in curvature in any direction for a highly curved freeform surface. In addition, the proposed method provides a system error calibration technique for the rotation axis errors. This technique can be used to avoid the dependence of the measuring system on the high-precision platform. The three key system errors that affect the measurement accuracy such as installation error of the B-axis, A-axis, and XZ perpendicularity error are first analyzed through establishing an error model. Then, the real error values are obtained by the optimal calculation in the calibration process. Finally, the feasibility of the measurement method is verified by measuring one cone mirror and an F-theta mirror and comparing the results to those obtained using commercial equipment. The maximum measurable angle of the system is ±90°, the maximum measurable diameter is 100 mm, and the measurement accuracy of the system reaches the micron level in this paper.


Author(s):  
Chengming Zuo ◽  
Xiaoqin Zhou ◽  
Qiang Liu ◽  
Rongqi Wang ◽  
Jieqiong Lin ◽  
...  

The surfaces with textures have been widely used as functional surfaces, and the textures are usually generated on flat or cylindrical surfaces. Textured freeform surfaces will have more potential applications. The authors have proposed the double-frequency elliptical vibration cutting (DFEVC) method to machine freeform surfaces on steel materials. Based on this method, a new diamond turning method is developed, in which the variable-frequency modulations are utilized to control the tool marks left on the machined surface to generate the micro/nano dimple textures with high uniformity on the freeform surface. Different from the conventional surface topography model based on the ideal tool cutting edge with zero cutting edge radius, a new modeling approach based on the tool surface profiles is proposed, in which the rake face, the flank face, and the cutting edge surface with actual non-zero cutting edge radius instead of the ideal cutting edge are included for the tool model, the tool surfaces during the machining process are analytically described as a function of the tool geometry and the machining parameters, and the influences of the tool surface profiles on the topography generation of the machined surface are considered. A typical freeform surface is textured on die steel, and the measured results verify the feasibility of the proposed turning method. Compared with the topography prediction results based on the ideal cutting edge, the results considering the tool surfaces show improved simulation accuracy, and are consistent with the experimental results, which validates the proposed topography prediction approach.


2020 ◽  
Vol 31 (5) ◽  
pp. 055202 ◽  
Author(s):  
Zhongming Zang ◽  
Jian Bai ◽  
Dong Liu ◽  
Yuling Liu ◽  
Yuhao Zhou ◽  
...  

1996 ◽  
Author(s):  
Vasyl V. Molebny ◽  
Ioannis G. Pallikaris ◽  
Leonidas P. Naoumidis ◽  
Eugene M. Smirnov ◽  
Leonid M. Ilchenko ◽  
...  

Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Author(s):  
J. C. Russ ◽  
T. Taguchi ◽  
P. M. Peters ◽  
E. Chatfield ◽  
J. C. Russ ◽  
...  

Conventional SAD patterns as obtained in the TEM present difficulties for identification of materials such as asbestiform minerals, although diffraction data is considered to be an important method for making this purpose. The preferred orientation of the fibers and the spotty patterns that are obtained do not readily lend themselves to measurement of the integrated intensity values for each d-spacing, and even the d-spacings may be hard to determine precisely because the true center location for the broken rings requires estimation. We have implemented an automatic method for diffraction pattern measurement to overcome these problems. It automatically locates the center of patterns with high precision, measures the radius of each ring of spots in the pattern, and integrates the density of spots in that ring. The resulting spectrum of intensity vs. radius is then used just as a conventional X-ray diffractometer scan would be, to locate peaks and produce a list of d,I values suitable for search/match comparison to known or expected phases.


Author(s):  
K. Z. Botros ◽  
S. S. Sheinin

The main features of weak beam images of dislocations were first described by Cockayne et al. using calculations of intensity profiles based on the kinematical and two beam dynamical theories. The feature of weak beam images which is of particular interest in this investigation is that intensity profiles exhibit a sharp peak located at a position very close to the position of the dislocation in the crystal. This property of weak beam images of dislocations has an important application in the determination of stacking fault energy of crystals. This can easily be done since the separation of the partial dislocations bounding a stacking fault ribbon can be measured with high precision, assuming of course that the weak beam relationship between the positions of the image and the dislocation is valid. In order to carry out measurements such as these in practice the specimen must be tilted to "good" weak beam diffraction conditions, which implies utilizing high values of the deviation parameter Sg.


Sign in / Sign up

Export Citation Format

Share Document