Tilt interferometer for detecting gravitational wave signals at high frequencies

Author(s):  
Shenghua Yu ◽  
Chunnong Zhao ◽  
David Blair ◽  
Carl Blair ◽  
Jian Liu ◽  
...  
Author(s):  
Marek Lewicki ◽  
Ville Vaskonen

AbstractWe study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U(1) symmetric potential. We perform lattice simulations of two-bubble collisions to properly model the scalar field gradients, and compute the GW spectrum sourced by them using the thin-wall approximation in many-bubble simulations. We find that in the U(1) symmetric case the low-frequency spectrum is $$\propto \omega $$ ∝ ω whereas for a real scalar field it is $$\propto \omega ^3$$ ∝ ω 3 . In both cases the spectrum decays as $$\omega ^{-2}$$ ω - 2 at high frequencies.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Jun Li ◽  
Guang-Hai Guo

AbstractWe consider the scalar induced gravitational waves from the cosmic microwave background (CMB) observations and the gravitational wave observations. In the $$\Lambda $$ Λ CDM+r model, we constrain the cosmological parameters within the evolution of the scalar induced gravitational waves by the additional scalar power spectrum. The two special cases called narrow power spectrum and wide power spectrum have influence on the cosmological parameters, especially the combinations of Planck18+BAO+BK15+LISA. We also compare these numerical results from four datasets within LIGO, LISA, IPTA and FAST projects, respectively. The constraints from FAST have a significant impact on tensor-to-scalar ratio. Besides, we only consider the relic density of induced gravitational waves with respect to different frequencies from CMB scale to high frequencies including the range of LIGO and LISA.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850042 ◽  
Author(s):  
M. Heydari-Fard ◽  
S. N. Hasani

We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at [Formula: see text]. This feature might be useful to detect the gravitational wave with high frequencies.


1979 ◽  
Vol 46 ◽  
pp. 77-88
Author(s):  
Edward L. Robinson

Three distinct kinds of rapid variations have been detected in the light curves of dwarf novae: rapid flickering, short period coherent oscillations, and quasi-periodic oscillations. The rapid flickering is seen in the light curves of most, if not all, dwarf novae, and is especially apparent during minimum light between eruptions. The flickering has a typical time scale of a few minutes or less and a typical amplitude of about .1 mag. The flickering is completely random and unpredictable; the power spectrum of flickering shows only a slow decrease from low to high frequencies. The observations of U Gem by Warner and Nather (1971) showed conclusively that most of the flickering is produced by variations in the luminosity of the bright spot near the outer edge of the accretion disk around the white dwarf in these close binary systems.


Sign in / Sign up

Export Citation Format

Share Document