Mode-division multiplexing using few-mode elliptical-core optical fibers (Conference Presentation)

Author(s):  
Giovanni Milione ◽  
Jian Fang
2020 ◽  
Vol 10 (23) ◽  
pp. 8584
Author(s):  
Xesús Prieto-Blanco ◽  
Carlos Montero-Orille ◽  
Vicente Moreno de Las Cuevas ◽  
María C. Nistal ◽  
Dolores Mouriz ◽  
...  

Few mode optical fibers are a promising way to continue increasing the data rate in optical communications. However, an efficient method to launch and extract separately each mode is essential. The design of a interferometric spatial mode (de)multiplexer for few mode optical fibers is presented. It is based on a single Michelson-like interferometer which consists of standard optical elements and has a reflective image inverter in one arm. Particular care has been taken in its design so that both polarizations behave the same. Moreover, this interferometer can process several pairs of modes simultaneously. The multiplexer also consists of: a phase plate, focusing optics at both ports of the interferometer and elliptical core fibers to recirculate some outputs. It can multiplex ten spatial and polarization modes and it presents low losses and no intrinsic crosstalk between modes. Additionally, it is polarization insensitive, achromatic, compact and inexpensive. The same system can work as a demultiplexer when used in reverse. In this case, both the losses and the crosstalk remain very low. Similar designs that perform other functions, like an add-drop mode multiplexing, are also suggested.


2014 ◽  
Vol 596 ◽  
pp. 807-810 ◽  
Author(s):  
Ming Ying Lan ◽  
Song Nie ◽  
Li Gao ◽  
Shan Yong Cai ◽  
Chen Xing Ma ◽  
...  

In this paper, a mode conversion model is proposed to increase the capacity of optical fiber communication systems. In this model, a spatial spectral matching method is used to convert the original mode to the desired mode for mode division multiplexing in optical fibers. A binary phase spatial light modulator is employed on the Fourier plane as a spatial filter. Numerical results show that the original modes can be converted to the desired modes.


2021 ◽  
Author(s):  
Reinhardt Rading

<div>The concept of mode division multiplexing also known as space division multiplexing was introduced as an alternative to combat the approaching capacity crunch in single mode fibers. Just like single mode fibers, space division multiplexed fibers will experience non-linearity at a different level and studies have shown that some linear effects can be beneficial in combating the nonlinear interference. This study aims to identify the benefits accrued when these linear effects are implemented by exploring the already existing models defined in the literature.</div>


2021 ◽  
Author(s):  
Reinhardt Rading

<div>The concept of mode division multiplexing also known as space division multiplexing was introduced as an alternative to combat the approaching capacity crunch in single mode fibers. Just like single mode fibers, space division multiplexed fibers will experience non-linearity at a different level and studies have shown that some linear effects can be beneficial in combating the nonlinear interference. This study aims to identify the benefits accrued when these linear effects are implemented by exploring the already existing models defined in the literature.</div>


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
P. Gregg ◽  
P. Kristensen ◽  
A. Rubano ◽  
S. Golowich ◽  
L. Marrucci ◽  
...  

Abstract Light carries both orbital angular momentum (OAM) and spin angular momentum (SAM), related to wavefront rotation and polarization, respectively. These are usually approximately independent quantities, but they become coupled by light’s spin-orbit interaction (SOI) in certain exotic geometries and at the nanoscale. Here we reveal a manifestation of strong SOI in fibers engineered at the micro-scale and supporting the only known example of propagating light modes with non-integer mean OAM. This enables propagation of a record number (24) of states in a single optical fiber with low cross-talk (purity > 93%), even as tens-of-meters long fibers are bent, twisted or otherwise handled, as fibers are practically deployed. In addition to enabling the investigation of novel SOI effects, these light states represent the first ensemble with which mode count can be potentially arbitrarily scaled to satisfy the exponentially growing demands of high-performance data centers and supercomputers, or telecommunications network nodes.


Sign in / Sign up

Export Citation Format

Share Document