Restore multiple particles by using short-path U-net model with average pooling based on digital holography

Author(s):  
Wei-Na Li ◽  
Ping Su ◽  
Jianshe Ma
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Osku Kemppinen ◽  
Jesse C. Laning ◽  
Ryan D. Mersmann ◽  
Gorden Videen ◽  
Matthew J. Berg

Abstract The lack of quantitative characterization of aerosol particles and their loading in the atmosphere is one of the greatest uncertainties in climate-change science. Improved instrumentation capable of determining the size and shape of aerosol particles is needed in efforts to reduce this uncertainty. We describe a new instrument carried by an unmanned aerial vehicle (UAV) that images free-floating aerosol particles in the atmosphere. Using digital holography, the instrument obtains the images in a non-contact manner, resolving particles larger than ten micrometers in size in a sensing volume of approximately three cubic centimeters. The instrument, called the holographic aerosol particle imager (HAPI), has the unique ability to image multiple particles freely entering its sensing volume from any direction via a single measurement. The construction of HAPI consists of 3D printed polymer structures that enable a sufficiently low size and weight that it may be flown on a commercial-grade UAV. Examples from field trials of HAPI show images of freshly emitted tree pollen and mineral dust.


2020 ◽  
Vol 59 (SO) ◽  
pp. SOOE03
Author(s):  
Hiroyuki Ishigaki ◽  
Takahiro Mamiya ◽  
Yoshio Hayasaki

Author(s):  
Jae-Eun Pi ◽  
Ji-Hun Choi ◽  
Jong-Heon Yang ◽  
Chi-Young Hwang ◽  
Gi Heon Kim ◽  
...  

Author(s):  
Ryuichi Iwata ◽  
Takeo Kajishima ◽  
Shintaro Takeuchi

In the present study, bubble-particle interactions in suspensions are investigated by a coupled immersed-boundary and volume-of-fluid method (IB-VOF method), which is proposed by the present authors. The validity of the numerical method is examined through simulations of a rising bubble in a liquid and a falling particle in a liquid. Dilute particle-laden flows and a gas-liquid-solid flow involving solid particles and bubbles of comparable sizes to one another (Db/Dp = 1) are simulated. Drag coefficients of particles in particle-laden flows are estimated and flow fields involving multiple particles and a bubble are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document