Short U-net model with average pooling based on in-line digital holography for simultaneous restoration of multiple particles

2021 ◽  
Vol 139 ◽  
pp. 106449
Author(s):  
Wei-Na Li ◽  
Ping Su ◽  
Jianshe Ma ◽  
Xiaohao Wang
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Osku Kemppinen ◽  
Jesse C. Laning ◽  
Ryan D. Mersmann ◽  
Gorden Videen ◽  
Matthew J. Berg

Abstract The lack of quantitative characterization of aerosol particles and their loading in the atmosphere is one of the greatest uncertainties in climate-change science. Improved instrumentation capable of determining the size and shape of aerosol particles is needed in efforts to reduce this uncertainty. We describe a new instrument carried by an unmanned aerial vehicle (UAV) that images free-floating aerosol particles in the atmosphere. Using digital holography, the instrument obtains the images in a non-contact manner, resolving particles larger than ten micrometers in size in a sensing volume of approximately three cubic centimeters. The instrument, called the holographic aerosol particle imager (HAPI), has the unique ability to image multiple particles freely entering its sensing volume from any direction via a single measurement. The construction of HAPI consists of 3D printed polymer structures that enable a sufficiently low size and weight that it may be flown on a commercial-grade UAV. Examples from field trials of HAPI show images of freshly emitted tree pollen and mineral dust.


2020 ◽  
Vol 59 (SO) ◽  
pp. SOOE03
Author(s):  
Hiroyuki Ishigaki ◽  
Takahiro Mamiya ◽  
Yoshio Hayasaki

Author(s):  
Jae-Eun Pi ◽  
Ji-Hun Choi ◽  
Jong-Heon Yang ◽  
Chi-Young Hwang ◽  
Gi Heon Kim ◽  
...  

Author(s):  
Ryuichi Iwata ◽  
Takeo Kajishima ◽  
Shintaro Takeuchi

In the present study, bubble-particle interactions in suspensions are investigated by a coupled immersed-boundary and volume-of-fluid method (IB-VOF method), which is proposed by the present authors. The validity of the numerical method is examined through simulations of a rising bubble in a liquid and a falling particle in a liquid. Dilute particle-laden flows and a gas-liquid-solid flow involving solid particles and bubbles of comparable sizes to one another (Db/Dp = 1) are simulated. Drag coefficients of particles in particle-laden flows are estimated and flow fields involving multiple particles and a bubble are demonstrated.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Davood Khodadad

We present a digital holographic method to increase height range measurement with a reduced phase ambiguity using a dual-directional illumination. Small changes in the angle of incident illumination introduce phase differences between the recorded complex fields. We decrease relative phase difference between the recorded complex fields 279 and 139 times by changing the angle of incident 0.5° and 1°, respectively. A two cent Euro coin edge groove is used to measure the shape. The groove depth is measured as ≈300  μm. Further, numerical refocusing and analysis of speckle displacements in two different planes are used to measure the depth without a use of phase unwrapping process.


2021 ◽  
pp. 127135
Author(s):  
He Yuan ◽  
Xiangchao Zhang ◽  
Feili Wang ◽  
Rui Xiong ◽  
Wei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document