Label-free 3D refractive index interferometric tomography of live cells with full angular coverage

Author(s):  
Matan Dudaie ◽  
Itay Barnea ◽  
Natan T. Shaked
mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Artur Yakimovich ◽  
Robert Witte ◽  
Vardan Andriasyan ◽  
Fanny Georgi ◽  
Urs F. Greber

ABSTRACTCytopathic effects (CPEs) are a hallmark of infections. CPEs are difficult to observe due to phototoxicity from classical light microscopy. We report distinct patterns of virus infections in live cells using digital holo-tomographic microscopy (DHTM). DHTM is label-free and records the phase shift of low-energy light passing through the specimen on a transparent surface with minimal perturbation. DHTM measures the refractive index (RI) and computes the refractive index gradient (RIG), unveiling optical heterogeneity in cells. We find that vaccinia virus (VACV), herpes simplex virus (HSV), and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV infection, but not HSV and RV infections, induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics and induced apoptotic features akin to those caused by the chemical compound staurosporine. In sum, we introduce DHTM for quantitative label-free microscopy in infection research and uncover virus type-specific changes and CPE in living cells with minimal interference.IMPORTANCEThis study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM.


2018 ◽  
Author(s):  
Artur Yakimovich ◽  
Robert Witte ◽  
Vardan Andriasyan ◽  
Fanny Georgi ◽  
Urs F. Grebera

Cytopathic effects (CPEs) are a hallmark of infections. CPEs can be observed by phase contrast or fluorescence light microscopy, albeit at the cost of phototoxicity. We report that digital holo-tomographic microscopy (DHTM) reveals distinct patterns of virus infections in live cells with minimal perturbation. DHTM is label-free, and records the phase shift of low energy light passing through the specimen on a transparent surface. DHTM infers a 3-dimensional (3D) tomogram based on the refractive index (RI). By measuring RI and computing the refractive index gradient (RIG) values DHTM unveils on optical heterogeneity in cells upon virus infection. We find that vaccinia virus (VACV), herpes simplex virus (HSV) and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV, but not HSV and RV infection induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics, and induced apoptotic features akin to the chemical compound staurosporin, but with virus-specific signatures. In sum, we introduce DHTM for quantitative label-free microscopy in infection research, and uncover virus-type specific changes and CPE in living cells at minimal interference.


2017 ◽  
Author(s):  
Kyoohyun Kim ◽  
Wei Sun Park ◽  
Sangchan Na ◽  
Sangbum Kim ◽  
Taehong Kim ◽  
...  

AbstractOptical diffraction tomography (ODT) provides label-free three-dimensional (3D) refractive index (RI) measurement of biological samples. However, due to the nature of the RI values of biological specimens, ODT has limited access to molecular specific information. Here, we present an optical setup combining ODT with three-channel 3D fluorescence microscopy, to enhance the molecular specificity of the 3D RI measurement. The 3D RI distribution and 3D deconvoluted fluorescence images of HeLa cells and NIH-3T3 cells are measured, and the cross-correlative analysis between RI and fluorescence of live cells are presented.


2018 ◽  
Author(s):  
Carmel L. Howe ◽  
Kevin F. Webb ◽  
Sidahmed A. Abayzeed ◽  
David J. Anderson ◽  
Chris Denning ◽  
...  

AbstractSurface plasmons are highly sensitive to refractive index variations adjacent to the surface. This sensitivity has been exploited successfully for chemical and biological assays. In these systems, a surface plasmon resonance (SPR)-based sensor detects temporal variations in the refractive index at a point. SPR has also been used in imaging systems where the spatial variations of refractive index in the sample provide the contrast mechanism. A high numerical aperture objective lens has been used to design SPR microscopy systems with the ability to image adherent live cells. Addressing research questions in cell physiology and pharmacology often requires the development of a multimodal microscope where complementary information can be obtained.In this paper, we present the development of a multimodal microscope that combines surface plasmon resonance imaging with a number of additional imaging modalities including bright-field, epi-fluorescence, total internal reflection microscopy (TIRM) and SPR fluorescence microscopy. We used a high numerical aperture objective lens to achieve SPR and TIR microscopy with the ability to image adherent live cells non-invasively. The platform has been used to image live cell cultures demonstrating both fluorescent and label-free techniques. The SPR and TIR imaging systems feature a wide field of view (300 µm) that allows measurements from multiple cells while the resolution is sufficient to image fine cellular processes. The ability of the platform to perform label-free functional imaging of living cell was demonstrated by imaging the spatial variations in contraction of stem cell-derived cardiomyocytes. This technique has a promise for non-invasive imaging of the development of cultured cells over very long periods of time.


2016 ◽  
Author(s):  
Doyeon Kim ◽  
Nuri Oh ◽  
Kyoohyun Kim ◽  
SangYun Lee ◽  
Chan-Gi Pack ◽  
...  

AbstractDelivery of gold nanoparticles (GNPs) into live cells has high potentials, ranging from molecular-specific imaging, photodiagnostics, to photothermal therapy. However, studying the long-term dynamics of cells with GNPs using conventional fluorescence techniques suffers from phototoxicity and photobleaching. Here, we present a method for 3-D imaging of GNPs inside live cells exploiting refractive index (RI) as imaging contrast. Employing optical diffraction tomography, 3-D RI tomograms of live cells with GNPs are precisely measured for an extended period with sub-micrometer resolution. The locations and contents of GNPs in live cells are precisely addressed and quantified due to their distinctly high RI values, which was validated by confocal fluorescence imaging of fluorescent dye conjugated GNPs. In addition, we perform quantitative imaging analysis including the segmentations of GNPs in the cytosol, the volume distributions of aggregated GNPs, and the temporal evolution of GNPs contents in HeLa and 4T1 cells.AbbreviationsGNPsgold nanoparticlesRIrefractive indexODToptical diffraction tomographyDMDdigital micromirror device


2018 ◽  
Author(s):  
Patrick A. Sandoz ◽  
Christopher Tremblay ◽  
Sebastien Equis ◽  
Sorin Pop ◽  
Lisa Pollaro ◽  
...  

AbstractHolo-tomographic microscopy (HTM) is a label-free non-phototoxic microscopy method reporting the fine changes of a cell’s refractive indexes (RI) in 3D. By combining HTM with epifluorescence, we demonstrate that cellular organelles such as Lipid droplets and mitochondria show a specific RI signature that distinguishes them with high resolution and contrast. We further show that HTM allows to follow in unprecedented ways the dynamics of mitochondria, lipid droplets as well as that of endocytic structures in live cells over long period of time, which led us to observe to our knowledge for the first time a global organelle spinning occurring before mitosis.


2019 ◽  
Vol 63 (5) ◽  
pp. 2028-2034 ◽  
Author(s):  
Kristel Sepp ◽  
Martin Lee ◽  
Marie T. J. Bluntzer ◽  
G. Vignir Helgason ◽  
Alison N. Hulme ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Runli Liang ◽  
Zijian Wan ◽  
Shaopeng Wang

AbstractQuantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 750
Author(s):  
Pasquale Marrazzo ◽  
Valeria Pizzuti ◽  
Silvia Zia ◽  
Azzurra Sargenti ◽  
Daniele Gazzola ◽  
...  

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Zhendong Yan ◽  
Chaojun Tang ◽  
Guohua Wu ◽  
Yumei Tang ◽  
Ping Gu ◽  
...  

Achieving perfect electromagnetic wave absorption with a sub-nanometer bandwidth is challenging, which, however, is desired for high-performance refractive-index sensing. In this work, we theoretically study metasurfaces for sensing applications based on an ultra-narrow band perfect absorption in the infrared region, whose full width at half maximum (FWHM) is only 1.74 nm. The studied metasurfaces are composed of a periodic array of cross-shaped holes in a silver substrate. The ultra-narrow band perfect absorption is related to a hybrid mode, whose physical mechanism is revealed by using a coupling model of two oscillators. The hybrid mode results from the strong coupling between the magnetic resonances in individual cross-shaped holes and the surface plasmon polaritons on the top surface of the silver substrate. Two conventional parameters, sensitivity (S) and figure of merit (FOM), are used to estimate the sensing performance, which are 1317 nm/RIU and 756, respectively. Such high-performance parameters suggest great potential for the application of label-free biosensing.


Sign in / Sign up

Export Citation Format

Share Document