Depth-of-field comparison between the plenoptic camera 1.0 and 2.0

Author(s):  
Viktor Eckstein ◽  
Tobias Schmid-Schirling ◽  
Daniel Carl ◽  
Ulrike Wallrabe
Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4142 ◽  
Author(s):  
Mingce Chen ◽  
Wenda He ◽  
Dong Wei ◽  
Chai Hu ◽  
Jiashuo Shi ◽  
...  

Plenoptic cameras have received a wide range of research interest because it can record the 4D plenoptic function or radiance including the radiation power and ray direction. One of its important applications is digital refocusing, which can obtain 2D images focused at different depths. To achieve digital refocusing in a wide range, a large depth of field (DOF) is needed, but there are fundamental optical limitations to this. In this paper, we proposed a plenoptic camera with an extended DOF by integrating a main lens, a tunable multi-focus liquid-crystal microlens array (TMF-LCMLA), and a complementary metal oxide semiconductor (CMOS) sensor together. The TMF-LCMLA was fabricated by traditional photolithography and standard microelectronic techniques, and its optical characteristics including interference patterns, focal lengths, and point spread functions (PSFs) were experimentally analyzed. Experiments demonstrated that the proposed plenoptic camera has a wider range of digital refocusing compared to the plenoptic camera based on a conventional liquid-crystal microlens array (LCMLA) with only one corresponding focal length at a certain voltage, which is equivalent to the extension of DOF. In addition, it also has a 2D/3D switchable function, which is not available with conventional plenoptic cameras.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Author(s):  
A.M. Jones ◽  
A. Max Fiskin

If the tilt of a specimen can be varied either by the strategy of observing identical particles orientated randomly or by use of a eucentric goniometer stage, three dimensional reconstruction procedures are available (l). If the specimens, such as small protein aggregates, lack periodicity, direct space methods compete favorably in ease of implementation with reconstruction by the Fourier (transform) space approach (2). Regardless of method, reconstruction is possible because useful specimen thicknesses are always much less than the depth of field in an electron microscope. Thus electron images record the amount of stain in columns of the object normal to the recording plates. For single particles, practical considerations dictate that the specimen be tilted precisely about a single axis. In so doing a reconstructed image is achieved serially from two-dimensional sections which in turn are generated by a series of back-to-front lines of projection data.


Author(s):  
K. Culbreth

The introduction of scanning electron microscopy and energy dispersive x-ray analysis to forensic science has provided additional methods by which investigative evidence can be analyzed. The importance of evidence from the scene of a crime or from the personal belongings of a victim and suspect has resulted in the development and evaluation of SEM/x-ray analysis applications to various types of forensic evidence. The intent of this paper is to describe some of these applications and to relate their importance to the investigation of criminal cases.The depth of field and high resolution of the SEM are an asset to the evaluation of evidence with respect to surface phenomena and physical matches (1). Fig. 1 shows a Phillips screw which has been reconstructed after the head and shank were separated during a hit-and-run accident.


Author(s):  
Jaap Brink ◽  
Wah Chiu

The crotoxin complex is a potent neurotoxin composed of a basic subunit (Mr = 12,000) and an acidic subunit (M = 10,000). The basic subunit possesses phospholipase activity whereas the acidic subunit shows no enzymatic activity at all. The complex's toxocity is expressed both pre- and post-synaptically. The crotoxin complex forms thin crystals suitable for electron crystallography. The crystals diffract up to 0.16 nm in the microscope, whereas images show reflections out to 0.39 nm2. Ultimate goal in this study is to obtain a three-dimensional (3D-) structure map of the protein around 0.3 nm resolution. Use of 100 keV electrons in this is limited; the unit cell's height c of 25.6 nm causes problems associated with multiple scattering, radiation damage, limited depth of field and a more pronounced Ewald sphere curvature. In general, they lead to projections of the unit cell, which at the desired resolution, cannot be interpreted following the weak-phase approximation. Circumventing this problem is possible through the use of 400 keV electrons. Although the overall contrast is lowered due to a smaller scattering cross-section, the signal-to-noise ratio of especially higher order reflections will improve due to a smaller contribution of inelastic scattering. We report here our preliminary results demonstrating the feasability of the data collection procedure at 400 kV.Crystals of crotoxin complex were prepared on carbon-covered holey-carbon films, quench frozen in liquid ethane, inserted into a Gatan 626 holder, transferred into a JEOL 4000EX electron microscope equipped with a pair of anticontaminators operating at −184°C and examined under low-dose conditions. Selected area electron diffraction patterns (EDP's) and images of the crystals were recorded at 400 kV and −167°C with dose levels of 5 and 9.5 electrons/Å, respectively.


Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


Sign in / Sign up

Export Citation Format

Share Document