Detection of industrial storage tanks at the city-level from optical satellite remote sensing images

2021 ◽  
Author(s):  
Mingyuan Zhu ◽  
Zhibao Wang ◽  
Lu Bai ◽  
Jie Zhang ◽  
Jinhua Tao ◽  
...  

Landslides ◽  
2021 ◽  
Author(s):  
Libo Cheng ◽  
Jia Li ◽  
Ping Duan ◽  
Mingguo Wang


2021 ◽  
Vol 13 (10) ◽  
pp. 1903
Author(s):  
Zhihui Li ◽  
Jiaxin Liu ◽  
Yang Yang ◽  
Jing Zhang

Objects in satellite remote sensing image sequences often have large deformations, and the stereo matching of this kind of image is so difficult that the matching rate generally drops. A disparity refinement method is needed to correct and fill the disparity. A method for disparity refinement based on the results of plane segmentation is proposed in this paper. The plane segmentation algorithm includes two steps: Initial segmentation based on mean-shift and alpha-expansion-based energy minimization. According to the results of plane segmentation and fitting, the disparity is refined by filling missed matching regions and removing outliers. The experimental results showed that the proposed plane segmentation method could not only accurately fit the plane in the presence of noise but also approximate the surface by plane combination. After the proposed plane segmentation method was applied to the disparity refinement of remote sensing images, many missed matches were filled, and the elevation errors were reduced. This proved that the proposed algorithm was effective. For difficult evaluations resulting from significant variations in remote sensing images of different satellites, the edge matching rate and the edge matching map are proposed as new stereo matching evaluation and analysis tools. Experiment results showed that they were easy to use, intuitive, and effective.



2021 ◽  
Vol 13 (16) ◽  
pp. 3264 ◽  
Author(s):  
Shuang Li ◽  
Zhongqiu Sun ◽  
Yafei Wang ◽  
Yuxia Wang

Studying urban expansion from a longer-term perspective is of great significance to obtain an in-depth understanding of the process of urbanization. Remote sensing data are mostly selected to investigate the long-term expansion of cities. In this study, we selected the world-class urban agglomeration of Beijing-Tianjin-Hebei (BTH) as the study area, and then discussed how to make full use of multi-source, multi-category, and multi-temporal spatial data (old maps and remote sensing images) to study long-term urbanization. Through this study, we addressed three questions: (1) How much has the urban area in BTH expanded in the past 100 years? (2) How did the urban area expand in the past century? (3) What factors or important historical events have changed the development of cities with different functions? By comprehensively using urban spatial data, such as old maps and remote sensing images, geo-referencing them, and extracting built-up area information, a long-term series of urban built-up areas in the BTH region can be obtained. Results show the following: (1) There was clear evidence of dramatic urban expansion in this area, and the total built-up area had increased by 55.585 times, from 126.181 km2 to 7013.832 km2. (2) Continuous outward expansion has always been the main trend, while the compactness of the built-up land within the city is constantly decreasing and the complexity of the city boundary is increasing. (3) Cities in BTH were mostly formed through the construction of city walls during the Ming and Qing dynasties, and the expansion process was mostly highly related to important political events, traffic development, and other factors. In summary, the BTH area, similarly to China and most regions of the world, has experienced rapid urbanization and the history of such ancient cities should be further preserved with the combined use of old maps.



2019 ◽  
Author(s):  
Min Xu ◽  
Hongxing Liu ◽  
Richard Beck ◽  
Molly Reif ◽  
Erich Emery ◽  
...  


2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.





IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 153394-153402
Author(s):  
Qulin Tan ◽  
Juan Ling ◽  
Jun Hu ◽  
Xiaochun Qin ◽  
Jiping Hu


Sign in / Sign up

Export Citation Format

Share Document