Optical design of a cascade airborne spectral imaging system with wide FOV and compactness

2021 ◽  
Author(s):  
Chenxin Zeng ◽  
Fenli Tan ◽  
Yiqun Ji
2014 ◽  
Vol 41 (1) ◽  
pp. 0116001
Author(s):  
薛庆生 Xue Qingsheng ◽  
曹佃生 Cao Diansheng ◽  
于向阳 Yu Xiangyang

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4011
Author(s):  
Chuanwei Yao ◽  
Yibing Shen

The image deconvolution technique can recover potential sharp images from blurred images affected by aberrations. Obtaining the point spread function (PSF) of the imaging system accurately is a prerequisite for robust deconvolution. In this paper, a computational imaging method based on wavefront coding is proposed to reconstruct the wavefront aberration of a photographic system. Firstly, a group of images affected by local aberration is obtained by applying wavefront coding on the optical system’s spectral plane. Then, the PSF is recovered accurately by pupil function synthesis, and finally, the aberration-affected images are recovered by image deconvolution. After aberration correction, the image’s coefficient of variation and mean relative deviation are improved by 60% and 30%, respectively, and the image can reach the limit of resolution of the sensor, as proved by the resolution test board. Meanwhile, the method’s robust anti-noise capability is confirmed through simulation experiments. Through the conversion of the complexity of optical design to a post-processing algorithm, this method offers an economical and efficient strategy for obtaining high-resolution and high-quality images using a simple large-field lens.


2021 ◽  
Vol 11 (12) ◽  
pp. 5628
Author(s):  
Run Fang ◽  
Libo Zeng ◽  
Fan Yi

Multi-spectral imaging technique plays an important role in real-world applications such as medicine and medical detections. This paper proposes a cervical cancer cell screening method to simultaneously adopt TBS classification and DNA quantitative analysis for a single cell smear. Through using compound staining on a smear, the cytoplasm is stained by Papanicolauo and the nucleus is stained by Feulgen. The main evaluation parameter is the DNA content of the nucleus, not the subjective description of cell morphology, which is more objective than the TBS classification method and reduces the chances of missing a diagnosis due to subjective factors. Each nucleus has its own DI value and color image of the whole cell, which is convenient for doctors as it allows them to review and confirm the morphology of cells with a nucleus DI of over 2.5. Mouse liver smears and cervical cases are utilized as the measuring specimens to evaluate the performance of the microscope multi-spectral imaging system; illustrative results demonstrate that the proposed system qualifies, with high accuracy and reliability, and further presents wide application prospects in the early diagnosis of cervical cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


2021 ◽  
Vol 2112 (1) ◽  
pp. 012021
Author(s):  
Chong Song ◽  
Lipeng Huo ◽  
Yong Huang ◽  
Yangdong Yan ◽  
Gang Wang ◽  
...  

Abstract Based on the optical system characteristics of coded aperture snapshot spectral imager (CASSI), an optimized optical system of shortwave infrared dual camera CASSI was designed based on improved Offner-Wynne imaging spectrometer. The operating wavelength of the optical system ranges from 900nm to 1700nm, and the focal length is 1200mm. It consists of two parts: the two dimensional imaging system and the multispectral CASSI imaging system. The key technical parameters of the two parts are the same and there is no visual axis difference. Therefore, the optimized optical system can effectively improve real-time performance, optical transmittance and compactness of the dual camera shortwave infrared CASSI, which is conducive to the application in optical measurement scenes in the shooting range.


2011 ◽  
Vol 78 (11) ◽  
pp. 503-507 ◽  
Author(s):  
Martin De Biasio ◽  
T. Arnold ◽  
R. Leitner

Sign in / Sign up

Export Citation Format

Share Document