Fluorescence and optoacoustics monitoring of tumor treatment with novel agents for combined photodynamic and chemotherapy

2021 ◽  
Author(s):  
I. Turchin ◽  
M. Kirillin ◽  
A. Orlova ◽  
V. Perekatova ◽  
V. Plekhanov ◽  
...  
Keyword(s):  
2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Janusz Bogdan ◽  
Joanna Pławińska-Czarnak ◽  
Joanna Zarzyńska

Urology ◽  
2020 ◽  
Author(s):  
Alexandre Azevedo Ziomkowski ◽  
João Rafael Silva Simões Estrela ◽  
Nilo Jorge Carvalho Leão Barretto ◽  
Nilo César Leão Barretto

Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Hiroaki Motegi ◽  
Shunsuke Terasaka ◽  
Shigeru Yamaguchi ◽  
Hiroyuki Kobayashi ◽  
Katsuyuki Asaoka ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Shingo Nishikawa ◽  
Ryo Ariyasu ◽  
Tomoaki Sonoda ◽  
Masafumi Saiki ◽  
Takahiro Yoshizawa ◽  
...  

A 27-year-old man was diagnosed with inflammatory myofibroblastic tumor, and multiple lymph node and subcutaneous metastases. After several administrations of anti-tumor therapy, he underwent mediastinal lymph node biopsy using endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) to confirm tumor relapse. Five weeks later, he complained of chest pain, then rapidly developed shock due to acute pericarditis. Although he was treated with antibiotics for anaerobic bacterial infection and cardiac drainage, mediastinal lymph node abscess and pericarditis did not improve. After the surgical procedure, his physical condition dramatically improved and he was treated with another molecularly targeted therapy. Pericarditis associated with EBUS-TBNA is extremely rare. In this case, salvage was achieved by surgical drainage of the lymph node abscess and pericarditis, and long survival was obtained with further administration of anti-tumor treatment.


2017 ◽  
Vol 23 (32) ◽  
pp. 4893-4905 ◽  
Author(s):  
Elena Voronov ◽  
Ron N. Apte

The importance of anti-tumor immunity in the outcome of cancer is now unequivocally established and recent achivements in the field have stimulated the development of new immunotherapeutical approaches. In invasive tumors, widespread inflammation promotes invasiveness and concomitantly also inhibits anti-tumor immune responses. We suggest that efficient tumor treatment should target both the malignant cells and the tumor microenvironment. Interleukin-1 (IL-1) is a pro-inflammatory as well as an immunostimulatory cytokine that is abundant in the tumor microenvironment. Manipulation of IL-1 can thus serve as an immunotherapeutical approach to reduce inflammation/immunosuppression and thus enhance anti-tumor immunity. The two major IL-1 agonistic molecules are IL-1α and IL-1β, which bind to the same IL-1 signaling receptor and induce the same array of biological activities. The IL-1 receptor antagonist (IL-Ra) is a physiological inhibitor of IL-1 that binds to its receptor without transmition of activation signals and thus serves as a decoy target. We have demonstrated that IL-1α and IL-1β are different in terms of the producing cells and their compartmentalization and the amount. IL-1α is mainly expressed intracellularly, in the cytosol, in the nucleus or exposed on the cell membrane, however, it is rarely secreted. IL-1β is active only as a secreted molecule that is mainly produced by activated myeloid cells. We have shown different functions of IL-1α and IL-1β in the malignant process. Thus, in its membrane- associated form, IL-1α is mainly immunostimulatory, while IL-1β that is secreted into the tumor microenvironment is mainly pro-inflammatory and promotes tumorigenesis, tumor invasiveness and immunosuppression. These distinct functions of the IL-1 agonistic molecules are mainly manifested in early stages of tumor development and the patterns of their expression dictate the direction of the malignant process. Here, we suggest that IL-1 modulation can serve as an effective mean to tilt the balance between inflammation and immunity in tumor sites, towards the latter. Different agents that neutralize IL-1, mainly the IL-Ra and specific antibodies, exist. They are safe and FDA-approved. The IL-1Ra has been widely and successfully used in patients with Rheumatoid arthritis, autoinflammatory diseases and various other diseases that have an inflammatory component. Here, we provide the rationale and experimental evidence for the use of anti-IL-1 agents in cancer patients, following first line therapy to debulk the major tumor's mass. The considerations and constraints of using anti-IL-1 treatments in cancer are also discussed. We hope that this review will stimulate studies that will fasten the application of IL-1 neutralization at the bedside of cancer patients.


2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


Sign in / Sign up

Export Citation Format

Share Document