Seismic damage control of steel bridge piers by adding low-yield-point steel (LYPS) plates

Author(s):  
Yi Zheng ◽  
Masato Abe ◽  
Yozo Fujino ◽  
Krzystof Wilde
2021 ◽  
Author(s):  
Takuma Rokutani ◽  
Kazutoshi Nagata ◽  
Takeshi Kitahara

<p>In Japan, many steel structures were constructed during the period of the high economic miracle, and they are now more than 50 years old and are aging. Corrosion has been confirmed at corners and the boundary of concrete-wrapped concrete in steel piers. It was found that corrosion damage at the corner of steel piers causes a decrease of seismic performance in our previous investigations that carried out seismic response analysis. Subsequently, in this study, the effect of corrosion damage at the near ground edge of steel bridge piers with a rectangular cross-section was investigated in detail on the buckling behaviour and seismic performance of structures. As a result, it is found that the buckling at the base causes a decrease in load bearing performance compared to the buckling in the entire panel. It is necessary to properly maintain to prevent buckling at the base caused by corrosion.</p>


2019 ◽  
Vol 9 (7) ◽  
pp. 1481 ◽  
Author(s):  
Shangshun Lin ◽  
Zhanghua Xia ◽  
Jian Xia

The large degradation of the mechanical performance of hollow reinforced concrete (RC) bridge piers subjected to multi-dimensional earthquakes has not been thoroughly assessed. This paper aims to improve the existing seismic damage model to assess the seismic properties of tall, hollow RC piers subjected to pseudo-static, biaxial loading. Cyclic bilateral loading tests on fourteen 1/14-scale pier specimens with different slenderness ratios, axial load ratios, and transverse reinforcement ratios were carried out to investigate the damage propagation and the cumulative dissipated energy with displacement loads. By considering the influence of energy dissipation on structural damage, a new damage model (M-Usami model) was developed to assess the damage characteristics of hollow RC piers. The results present four consecutive damage stages during the loading process: (a) cracking on concrete surface, (b) yielding of longitudinal reinforcements; (c) spalling of concrete, and (d) collapsing of pier after the concrete crushed and the longitudinal bars ruptured due to the flexural failure. The damage level caused by the seismic waves can be reduced by designing specimens with a good seismic energy dissipation capacity. The theoretical damage index values calculated by the M-Usami model agreed well with the experimental observations. The developed M-Usami model can provide insights into the approaches to assessing the seismic damage of hollow RC piers subjected to bilateral seismic excitations.


Sign in / Sign up

Export Citation Format

Share Document