Design of physical layer management module of optical wireless local-area network

2002 ◽  
Author(s):  
Feng Jiang ◽  
Haitao Zhang ◽  
Mali Gong ◽  
Ping Yan ◽  
Xin Yang ◽  
...  
2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


Author(s):  
Adnan Hussein Ali ◽  
Alaa Desher Farhood ◽  
Maham Kamil Naji

The greatest advantages of optical fibers are the possibility of extending data rate transmission and propagation distances. Being a multi-carrier technique, the orthogonal frequency division multiplexing (OFDM) can be applicable in hybrid optical-wireless systems design owing to its best spectral efficiency for the interferences of radio frequency (RF) and minor multi-path distortion. An optical OFDM-RoF-based wireless local area network (W-LAN) system has been studied and evaluated in this work. The outline for integrating an optical technology and wireless in a single system was provided with the existence of OFDM-RoF technology and the microstrip patch antenna; these were applied in the Optisystem communication tool. The design of the proposed OFDM-RoF system is aimed at supporting mm-wave services and multi-standard operations. The proposed system can operate on different RF bands using different modulation schemes like 4,16 and 64QAM, that may be associated to OFDM and multidata rates up to 5 Gbps. The results demonstrate the robustness of the integrated optical wireless link in propagating OFDM-RoF-based WLAN signals across optical fibers.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2020 ◽  
Vol 1550 ◽  
pp. 032078
Author(s):  
Kaigang Fan ◽  
Xin Chen ◽  
Biao Zhao ◽  
Jiale Wang ◽  
Wenbin Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document