Modeling and experimental investigation of x-ray spectra from a liquid metal anode x-ray tube

2004 ◽  
Author(s):  
Bernd R. David ◽  
Axel Thran ◽  
Rainer Eckart
2019 ◽  
Vol 34 (7) ◽  
pp. 1497-1502 ◽  
Author(s):  
Malte Wansleben ◽  
Claudia Zech ◽  
Cornelia Streeck ◽  
Jan Weser ◽  
Christoph Genzel ◽  
...  

Liquid-metal jet X-ray sources promise to deliver high photon fluxes, which are unprecedented for laboratory based X-ray sources, because the regenerating liquid-metal anode is less sensitive to damage caused by an increased electron beam power density.


2004 ◽  
Author(s):  
Bernd R. David ◽  
Hans Barschdorf ◽  
Volker Doormann ◽  
Rainer Eckart ◽  
Geoffrey Harding ◽  
...  
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 33 (7) ◽  
pp. 076610
Author(s):  
Chunwei Zhang ◽  
Yun She ◽  
Yingxue Hu ◽  
Zijing Li ◽  
Weicen Wang ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. eabc8660
Author(s):  
F. Mirani ◽  
A. Maffini ◽  
F. Casamichiela ◽  
A. Pazzaglia ◽  
A. Formenti ◽  
...  

Among the existing elemental characterization techniques, particle-induced x-ray emission (PIXE) and energy-dispersive x-ray (EDX) spectroscopy are two of the most widely used in different scientific and technological fields. Here, we present the first quantitative laser-driven PIXE and laser-driven EDX experimental investigation performed at the Centro de Láseres Pulsados in Salamanca. Thanks to their potential for compactness and portability, laser-driven particle sources are very appealing for materials science applications, especially for materials analysis techniques. We demonstrate the possibility to exploit the x-ray signal produced by the co-irradiation with both electrons and protons to identify the elements in the sample. We show that, using the proton beam only, we can successfully obtain quantitative information about the sample structure through laser-driven PIXE analysis. These results pave the way toward the development of a compact and multifunctional apparatus for the elemental analysis of materials based on a laser-driven particle source.


Sign in / Sign up

Export Citation Format

Share Document