Wide-bandgap organic photovoltaics on flexible plastic substrates using conducting polymer electrodes

Author(s):  
Gary P. Kushto ◽  
Woohong Kim ◽  
Zakya H. Kafafi
2017 ◽  
Vol 5 (41) ◽  
pp. 10900-10906 ◽  
Author(s):  
Melaku Dereje Mamo ◽  
Eun-Sol Shin ◽  
Yong-Young Noh

We report a reliable and low-cost self-aligned patterning process for the formation of conducting polymer electrodes with a high resolution on flexible plastic substrates.


2005 ◽  
Vol 86 (9) ◽  
pp. 093502 ◽  
Author(s):  
Gary P. Kushto ◽  
Woohong Kim ◽  
Zakya H. Kafafi

Author(s):  
Yanchun Sun ◽  
Chun Yu Sun ◽  
Zhongxiang Chen ◽  
Haitao Wang ◽  
Peng Wang ◽  
...  

Here, using a conducting polymer, polyaniline (PANI), membrane as the working electrode, we demonstrate the growth and morphology control of Cu and Cu2O through the electrodeposition technique, which is not...


1995 ◽  
Vol 75 (1) ◽  
pp. 65-68 ◽  
Author(s):  
Masahiro Nohara ◽  
Teruhisa Ohno ◽  
Michio Matsumura

2019 ◽  
Vol 116 (44) ◽  
pp. 22037-22043 ◽  
Author(s):  
Mohammad Mahdi Tavakoli ◽  
Riccardo Po ◽  
Gabriele Bianchi ◽  
Alessandra Cominetti ◽  
Chiara Carbonera ◽  
...  

Organic photovoltaics (OPVs) have attracted tremendous attention in the field of thin-film solar cells due to their wide range of applications, especially for semitransparent devices. Here, we synthesize a dithiaindacenone-thiophene-benzothiadiazole-thiophene alternating donor copolymer named poly{[2,7-(5,5-didecyl-5H-1,8-dithia-as-indacenone)]-alt-[5,5-(5′,6′-dioctyloxy-4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]} (PDTIDTBT), which shows a relatively wide bandgap of 1.82 eV, good mobility, and high transmittance and ambient stability. In this work, we fabricate an OPV device using monolayer graphene as top electrode. Due to the stability of PDTIDTBT in air and water, we use a wet transfer technique for graphene to fabricate semitransparent OPVs. We demonstrate OPVs based on the PDTIDTBT:Phenyl-C61/71-butyric acid methyl ester (PCBM) blend with maximum power conversion efficiencies (PCEs) of 6.1 and 4.75% using silver and graphene top electrodes, respectively. Our graphene-based device shows a high average visible transmittance (AVT) of 55%, indicating the potential of PDTIDTBT for window application and tandem devices. Therefore, we also demonstrate tandem devices using the PDTIDTBT:Phenyl-C61-butyric acid methyl ester (PC60BM) blend in both series and parallel connections with average PCEs of 7.3 and 7.95%, respectively. We also achieve a good average PCE of 8.26% with an average open circuit voltage (Voc) of 1.79 V for 2-terminal tandem OPVs using this blend. Based on tandem design, an OPV with PCE of 6.45% and AVT of 38% is demonstrated. Moreover, our devices show improved shelf life and ultraviolet (UV) stability (using CdSe/ZnS core shell quantum dots [QDs]) in ambient with 45% relative humidity.


Sign in / Sign up

Export Citation Format

Share Document