Wide Bandgap Polymer with Narrow Photon Harvesting in Visible Light Range Enables Efficient Semitransparent Organic Photovoltaics

2021 ◽  
pp. 2107934
Author(s):  
Chunyu Xu ◽  
Ke Jin ◽  
Zuo Xiao ◽  
Zijin Zhao ◽  
Xiaoling Ma ◽  
...  
2018 ◽  
Vol 30 (26) ◽  
pp. 1800403 ◽  
Author(s):  
Wenrui Liu ◽  
Jianyun Zhang ◽  
Zichun Zhou ◽  
Dongyang Zhang ◽  
Yuan Zhang ◽  
...  

Author(s):  
Dessy Ariyanti ◽  
Junzhe Dong ◽  
Junye Dong ◽  
Wei Gao

<p>Titanium dioxide (TiO2) has gained much attentions for the last few decades due to its remarkable performance in photocatalysis and some other related properties. However, its wide bandgap (~3.2 eV) can only absorb UV energy which is only ~5% of solar light spectrum. The objective of this research was to improve the photocatalytic activity of TiO2 by improving the optical absorption to the visible light range. Here, colored TiO2 nanoparticles range from light to dark grey were prepared via aluminium treatment at the temperatures ranging from 400 to 600 oC. The modified TiO2 is able to absorb up to 50% of visible light (400-700 nm) and shows a relatively good photocatalytic activity in organic dye (Rhodamine B) degradation under visible light irradiation compared with the commercial TiO2. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 10th November 2015; Revised: 7th January 2016; Accepted: 7th January 20 </em></p><p><strong>How to Cite</strong>: Ariyanti, D., Dong, J.Z., Dong, J.Y., Gao, W. (2016). Visible Light Photocatalytic Properties of Modified Titanium Dioxide Nanoparticles via Aluminium Treatment. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (1): 40-47. (doi:10.9767/bcrec.11.1.414.40-47)</p><p><strong>Permalink/DOI</strong>: <a href="http://dx.doi.org/10.9767/bcrec.11.1.414.40-47">http://dx.doi.org/10.9767/bcrec.11.1.414.40-47</a></p>


2020 ◽  
Vol 56 (35) ◽  
pp. 4750-4760 ◽  
Author(s):  
Cunbin An ◽  
Zhong Zheng ◽  
Jianhui Hou

This feature article summarizes our recent achievements in the development of wide bandgap polymer donors as high-performance organic photovoltaics.


2021 ◽  
Author(s):  
Junli Chang ◽  
Liping Jiang ◽  
Guangzhao Wang ◽  
Yuhong Huang ◽  
Hong Chen

The optical absorption performance of the perovskite FAPbI3 in the visible-light range is significantly improved by constructing a CdS/FAPbI3 heterostructure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeasmin Akter ◽  
Md. Abu Hanif ◽  
Md. Akherul Islam ◽  
Kamal Prasad Sapkota ◽  
Jae Ryang Hahn

AbstractA convenient route was developed for the selective preparation of two stable nanocomposites, Ti3+/TiO2/CNT (labeled as TTOC-1 and TTOC-3) and Ti3+/TiO2/carbon layer (labeled as TTOC-2), from the same precursor by varying the amount of single-walled carbon nanotubes used in the synthesis. TiO2 is an effective photocatalyst; however, its wide bandgap limits its usefulness to the UV region. As a solution to this problem, our prepared nanocomposites exhibit a small bandgap and wide visible-light (VL) absorption because of the introduction of carbonaceous species and Ti3+ vacancies. The photocatalytic efficiency of the nanocomposites was examined via the degradation of methylene blue dye under VL. Excellent photocatalytic activity of 83%, 98%, and 93% was observed for TTOC-1, TTOC-2, and TTOC-3 nanocomposites within 25 min. In addition, the photocatalytic degradation efficiency of TTOC-2 toward methyl orange, phenol, rhodamine B, and congo red was 28%, 69%, 71%, and 91%, respectively, under similar experimental conditions after 25 min. Higher reusability and structural integrity of the as-synthesized photocatalyst were confirmed within five consecutive runs by photocatalytic test and X-ray diffraction analysis, respectively. The resulting nanocomposites provide new insights into the development of VL-active and stable photocatalysts with high efficiencies.


Polymer ◽  
2021 ◽  
pp. 124193
Author(s):  
Zesheng Zhang ◽  
Feilong Pan ◽  
Mei Luo ◽  
Dong Yuan ◽  
Haizhen Liu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Hanpu Liang ◽  
Yifeng Duan

GaN-ZnO alloys are more promising semiconductors than their counterparts for optoelectronic applications due to the abrupt red shift in the visible-light range. Unfortunately, the strong internal electrostatic field (IEF) seriously...


Sign in / Sign up

Export Citation Format

Share Document