Active building blocks for silicon photonic devices

Author(s):  
Sharon M. Weiss ◽  
Philippe M. Fauchet
Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1321-1340
Author(s):  
Lu Sun ◽  
Yong Zhang ◽  
Yu He ◽  
Hongwei Wang ◽  
Yikai Su

AbstractSubwavelength structures such as subwavelength gratings (SWGs) and subwavelength metamaterials are capable of tailoring the optical properties of materials and controlling the flow of light at the nanoscale. The effective indices of the subwavelength structured strip and slab waveguides can be changed in a wide range by choosing an appropriate duty cycle or a filling factor of silicon, which provides an effective method to manipulate the optical field and achieve effective index matching for functional devices. Recent advances in nanofabrication techniques have made it possible to implement subwavelength structures in silicon strip and slab waveguides. Here we review various approaches used to design subwavelength structures and achieve exotic optical responses and discuss how these structures can be used to realize high-performance silicon photonic devices. Both one-dimensional SWG devices and two-dimensional subwavelength metamaterial devices are covered in this review, including subwavelength structure–based polarization handling devices, mode manipulation devices, and building blocks for integrated optical interconnects. Perspectives on subwavelength structured silicon photonic devices are also discussed.


2021 ◽  
pp. 2000501
Author(s):  
Jorge Parra ◽  
Irene Olivares ◽  
Antoine Brimont ◽  
Pablo Sanchis

Nanophotonics ◽  
2014 ◽  
Vol 3 (4-5) ◽  
pp. 329-341 ◽  
Author(s):  
Raji Shankar ◽  
Marko Lončar

AbstractThe mid-infrared (IR) wavelength region (2–20 µm) is of great interest for a number of applications, including trace gas sensing, thermal imaging, and free-space communications. Recently, there has been significant progress in developing a mid-IR photonics platform in Si, which is highly transparent in the mid-IR, due to the ease of fabrication and CMOS compatibility provided by the Si platform. Here, we discuss our group’s recent contributions to the field of silicon-based mid-IR photonics, including photonic crystal cavities in a Si membrane platform and grating-coupled high-quality factor ring resonators in a silicon-on-sapphire (SOS) platform. Since experimental characterization of microphotonic devices is especially challenging at the mid-IR, we also review our mid-IR characterization techniques in some detail. Additionally, pre- and post-processing techniques for improving device performance, such as resist reflow, Piranha clean/HF dip cycling, and annealing are discussed.


1992 ◽  
Vol 262 ◽  
Author(s):  
P. Bond ◽  
P. Sengupta ◽  
Kevin G. Orrman-Rossiter ◽  
G. K. Reeves ◽  
P. J. K. Paterson

ABSTRACTIndium Phosphide (InP) based multilayer structures are becoming increasingly important in the semiconductor industry with optoelectronic applications being the main growth area. Mesa type structures with finely controlled width and etch angle, often form the building blocks for many of these photonic devices. Traditional wet etching techniques have often proved to be inadequate for the required anisotropie removal of material. This paper presents the results of etching semi-insulating InP (100) using a combination of an Argon ion beam and a reactive gas, CCl2F2 (Freon 12). It was found that the etch rate was enhanced by increasing the ion energy and by the addition of CCl2F2. Auger electron spectroscopy revealed that the increased etch rate was accompanied by an increase in the surface indium concentration and at low ion beam energies carbon build-up retarded the etch rate. The optimum etch angle to fabricate 3μm waveguides was found to be 22° to the surface normal, however Schottky contacts to these structures were unsuccessful.


2012 ◽  
Vol 20 (18) ◽  
pp. 20564 ◽  
Author(s):  
Li Fan ◽  
Leo T. Varghese ◽  
Yi Xuan ◽  
Jian Wang ◽  
Ben Niu ◽  
...  

Author(s):  
Robert Halir ◽  
Jose Manuel Luque-González ◽  
Alejandro Sánchez-Postigo ◽  
Carlos Pérez-Armenta ◽  
Pablo Ginel-Moreno ◽  
...  

2020 ◽  
Vol 26 (5) ◽  
pp. 1-20 ◽  
Author(s):  
Yiwei Xie ◽  
Yaocheng Shi ◽  
Liu Liu ◽  
Jianwei Wang ◽  
Rubana Priti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document