Detectors for the James Webb Space Telescope near infrared spectrograph (NIRSpec)

2006 ◽  
Author(s):  
Bernard J. Rauscher ◽  
Torsten Böker ◽  
Craig Cabelli ◽  
Guido De Marchi ◽  
Pierre Ferruit ◽  
...  
Author(s):  
Muhammad Musaddique Ali Rafique

NASA/ESA/CSA joint venture James Webb Space Telescope is about to be launched. It is hypothesized to operate in near-infrared range. It is also hypothesized to unveil early star formation, galaxies, and universe due to its orbit, point in orbit and orbital motion. It has been under manufacturing for over 20 years at a staggering cost of 10 billion US dollars (most expensive scientific experiment in history). Beryllium (Be) is chosen to be element for construction of its main mirrors due to its high stiffness, low density, low linear coefficient of thermal expansion (α) in cryogenics and high thermal conductivity. It is followed by gold (Au) layer deposition on its (Be) surface to enhance its sensitivity towards infrared radiation as later is hypothesized to bear superior properties. However, serious mistakes have been made in selecting this material for this application. Owing to its crystal structure (hexagonal close packed (hcp)), slip planes (basal, prismatic and pyramidal) and mechanisms of their activation, Be necessitates easy fracture at cryogenic temperature. It has anisotropic properties and prone to transverse fracture under tensile loading. Furthermore, its ductile to brittle transition temperature is very low making it entirely unsuitable for such an application. It is one of most expensive metals on planet. This study constitutes revisiting these fundamental properties and mechanisms which were entirely ignored during materials selection thus rendering whole project useless.


2019 ◽  
Vol 486 (3) ◽  
pp. 3087-3104 ◽  
Author(s):  
T W Kemp ◽  
J S Dunlop ◽  
R J McLure ◽  
C Schreiber ◽  
A C Carnall ◽  
...  

Abstract We present a new analysis of the potential power of deep, near-infrared, imaging surveys with the James Webb Space Telescope (JWST) to improve our knowledge of galaxy evolution. In this work we properly simulate what can be achieved with realistic survey strategies, and utilize rigorous signal-to-noise ratio calculations to calculate the resulting posterior constraints on the physical properties of galaxies. We explore a broad range of assumed input galaxy types (>20 000 models, including extremely dusty objects) across a wide redshift range (out to z ≃ 12), while at the same time considering a realistic mix of galaxy properties based on our current knowledge of the evolving population (as quantified through the Empirical Galaxy Generator). While our main focus is on imaging surveys with NIRCam, spanning $\lambda _{\mathrm{ obs}} = 0.8\!-\!5.0\, \mu$m, an important goal of this work is to quantify the impact/added-value of: (i) parallel imaging observations with MIRI at longer wavelengths, and (ii) deeper supporting optical/UV imaging with HST (potentially prior to JWST launch) in maximizing the power and robustness of a major extragalactic NIRCam survey. We show that MIRI parallel 7.7-$\mu$m imaging is of most value for better constraining the redshifts and stellar masses of the dustiest (AV > 3) galaxies, while deep B-band imaging (reaching ≃ 28.5 AB mag) with ACS on HST is vital for determining the redshifts of the large numbers of faint/low-mass, z < 5 galaxies that will be detected in a deep JWST NIRCam survey.


2021 ◽  
Vol 922 (2) ◽  
pp. L39
Author(s):  
Daniel J. Whalen ◽  
Mar Mezcua ◽  
Samuel J. Patrick ◽  
Avery Meiksin ◽  
Muhammad A. Latif

Abstract Direct-collapse black holes (DCBHs) forming at z ∼ 20 are currently the leading candidates for the seeds of the first quasars, over 200 of which have now been found at z > 6. Recent studies suggest that DCBHs could be detected in the near-infrared by the James Webb Space Telescope, Euclid, and the Roman Space Telescope. However, new radio telescopes with unprecedented sensitivities such as the Square Kilometre Array (SKA) and the Next-Generation Very Large Array (ngVLA) may open another window on the properties of DCBHs in the coming decade. Here we estimate the radio flux from DCBHs at birth at z = 8–20 with several fundamental planes of black hole accretion. We find that they could be detected at z ∼ 8 by the SKA-FIN all-sky survey. Furthermore, SKA and ngVLA could discover 106–107 M ⊙ BHs out to z ∼ 20, probing the formation pathways of the first quasars in the universe.


Sign in / Sign up

Export Citation Format

Share Document