scholarly journals Maximizing the power of deep extragalactic imaging surveys with the James Webb Space Telescope

2019 ◽  
Vol 486 (3) ◽  
pp. 3087-3104 ◽  
Author(s):  
T W Kemp ◽  
J S Dunlop ◽  
R J McLure ◽  
C Schreiber ◽  
A C Carnall ◽  
...  

Abstract We present a new analysis of the potential power of deep, near-infrared, imaging surveys with the James Webb Space Telescope (JWST) to improve our knowledge of galaxy evolution. In this work we properly simulate what can be achieved with realistic survey strategies, and utilize rigorous signal-to-noise ratio calculations to calculate the resulting posterior constraints on the physical properties of galaxies. We explore a broad range of assumed input galaxy types (>20 000 models, including extremely dusty objects) across a wide redshift range (out to z ≃ 12), while at the same time considering a realistic mix of galaxy properties based on our current knowledge of the evolving population (as quantified through the Empirical Galaxy Generator). While our main focus is on imaging surveys with NIRCam, spanning $\lambda _{\mathrm{ obs}} = 0.8\!-\!5.0\, \mu$m, an important goal of this work is to quantify the impact/added-value of: (i) parallel imaging observations with MIRI at longer wavelengths, and (ii) deeper supporting optical/UV imaging with HST (potentially prior to JWST launch) in maximizing the power and robustness of a major extragalactic NIRCam survey. We show that MIRI parallel 7.7-$\mu$m imaging is of most value for better constraining the redshifts and stellar masses of the dustiest (AV > 3) galaxies, while deep B-band imaging (reaching ≃ 28.5 AB mag) with ACS on HST is vital for determining the redshifts of the large numbers of faint/low-mass, z < 5 galaxies that will be detected in a deep JWST NIRCam survey.

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 149 ◽  
Author(s):  
Zifeng Lu ◽  
Jinghang Zhang ◽  
Hua Liu ◽  
Jialin Xu ◽  
Jinhuan Li

In the Hadamard transform (HT) near-infrared (NIR) spectrometer, there are defects that can create a nonuniform distribution of spectral energy, significantly influencing the absorbance of the whole spectrum, generating stray light, and making the signal-to-noise ratio (SNR) of the spectrum inconsistent. To address this issue and improve the performance of the digital micromirror device (DMD) Hadamard transform near-infrared spectrometer, a split waveband scan mode is proposed to mitigate the impact of the stray light, and a new Hadamard mask of variable-width stripes is put forward to improve the SNR of the spectrometer. The results of the simulations and experiments indicate that by the new scan mode and Hadamard mask, the influence of stray light is restrained and reduced. In addition, the SNR of the spectrometer also is increased.


2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


Author(s):  
Muhammad Musaddique Ali Rafique

NASA/ESA/CSA joint venture James Webb Space Telescope is about to be launched. It is hypothesized to operate in near-infrared range. It is also hypothesized to unveil early star formation, galaxies, and universe due to its orbit, point in orbit and orbital motion. It has been under manufacturing for over 20 years at a staggering cost of 10 billion US dollars (most expensive scientific experiment in history). Beryllium (Be) is chosen to be element for construction of its main mirrors due to its high stiffness, low density, low linear coefficient of thermal expansion (α) in cryogenics and high thermal conductivity. It is followed by gold (Au) layer deposition on its (Be) surface to enhance its sensitivity towards infrared radiation as later is hypothesized to bear superior properties. However, serious mistakes have been made in selecting this material for this application. Owing to its crystal structure (hexagonal close packed (hcp)), slip planes (basal, prismatic and pyramidal) and mechanisms of their activation, Be necessitates easy fracture at cryogenic temperature. It has anisotropic properties and prone to transverse fracture under tensile loading. Furthermore, its ductile to brittle transition temperature is very low making it entirely unsuitable for such an application. It is one of most expensive metals on planet. This study constitutes revisiting these fundamental properties and mechanisms which were entirely ignored during materials selection thus rendering whole project useless.


2006 ◽  
Author(s):  
Bernard J. Rauscher ◽  
Torsten Böker ◽  
Craig Cabelli ◽  
Guido De Marchi ◽  
Pierre Ferruit ◽  
...  

2020 ◽  
Vol 495 (1) ◽  
pp. 962-970
Author(s):  
J Chouqar ◽  
Z Benkhaldoun ◽  
A Jabiri ◽  
J Lustig-Yaeger ◽  
A Soubkiou ◽  
...  

ABSTRACT We investigate the potential for the James Webb Space Telescope (JWST) to detect and characterize the atmospheres of the sub-Neptunian exoplanets in the TOI-270 system. Sub-Neptunes are considered more likely to be water worlds than gas dwarfs. We model their atmospheres using three atmospheric compositions – two examples of hydrogen-dominated atmospheres and a water-dominated atmosphere. We then simulate the infrared transmission spectra of these atmospheres for JWST instrument modes optimized for transit observation of exoplanet atmospheres: NIRISS, NIRSpec, and MIRI. We then predict the observability of each exoplanet’s atmosphere. TOI-270c and d are excellent targets for detecting atmospheres with JWST transmission spectroscopy, requiring only 1 transit observation with NIRISS, NIRSpec, and MIRI; higher signal-to-noise ratio can be obtained for a clear H-rich atmosphere. Fewer than three transits with NIRISS and NIRSpec may be enough to reveal molecular features. Water-dominated atmospheres require more transits. Water spectral features in water-dominated atmospheres may be detectable with NIRISS in two or three transits. We find that the detection of spectral features in a cloudy, H-rich atmosphere does not require integrations as long as those required for the water-dominated atmosphere, which is consistent with the differences in atmospheric mean molecular weight. TOI-270c and d could be prime targets for JWST transit observations of sub-Neptune atmospheres. These results provide useful predictions for observers who may propose to use JWST to detect and characterize the TOI-270 planet atmospheres.


2019 ◽  
Author(s):  
Terrence Jao ◽  
Krishna Nayak

AbstractPurposeTo determine the impact of imaging parameters on the temporal signal-to-noise ratio (TSNR) of quantitative cardiac magnetic resonance (MR) in humans, and to determine applicability of the physiological noise covariance (PNC) model for physiological noise (PN).MethodsWe conducted MRI experiments in four healthy volunteers, and obtained series of short-axis cardiac images acquired with snapshot balanced steady-state free precession (bSSFP) and snapshot gradient echo (GRE) using a broad range of spatial resolutions and parallel imaging acceleration factors commonly used in quantitative cardiac MR. We measured regional SNR and TSNR in these datasets and fit the measurements to the PNC model for PN, which assumes that PN scales with signal strength.ResultsThe relationship between SNR and TSNR in human cardiac MR without contrast preparation was well modeled by the PNC model. SNR consistently decreased as the spatial resolution (matrix size) and acceleration factor (R) increased for both GRE and bSSFP imaging. TSNR varied linearly with SNR using GRE imaging, when SNR was low (SNR < 20), and approached an asymptotic limit using bSSFP imaging, when SNR was high (SNR > 40).ConclusionsThe PNC model can be used to guide the choice of matrix size and acceleration factor to optimize TSNR in stable contrast cardiac MR, such as T2-prepared Blood-Oxygen-Level-Dependent (BOLD) and several variants of Arterial Spin Labeled (ASL) cardiac MR.


2019 ◽  
Vol 486 (2) ◽  
pp. 2643-2659 ◽  
Author(s):  
Kameswara Bharadwaj Mantha ◽  
Daniel H McIntosh ◽  
Cody P Ciaschi ◽  
Rubyet Evan ◽  
Henry C Ferguson ◽  
...  

Abstract The role of major mergers in galaxy evolution remains a key open question. Existing empirical merger identification methods use non-parametric and subjective visual classifications that can pose systematic challenges to constraining merger histories. As a first step towards overcoming these challenges, we develop and share publicly a new python-based software tool that identifies and extracts the flux-wise and area-wise significant contiguous regions from the model-subtracted residual images produced by popular parametric light-profile fitting tools (e.g. galfit). Using Hubble Space Telescope (HST) H-band single-Sérsic residual images of 17 CANDELS galaxies, we demonstrate the tools ability to measure the surface brightness and improve the qualitative identification of a variety of common residual features (disc structures, spiral substructures, plausible tidal features, and strong gravitational arcs). We test our method on synthetic HST observations of a z ∼ 1.5 major merger from the VELA hydrodynamic simulations. We extract H-band residual features corresponding to the birth, growth, and fading of tidal features during different stages and viewing orientations at CANDELS depths and resolution. We find that the extracted features at shallow depths have noisy visual appearance and are susceptible to viewing angle effects. For a VELA z ∼ 3 major merger, we find that James Webb Space Telescope NIRCam observations can probe high-redshift tidal features with considerable advantage over existing HST capabilities. Further quantitative analysis of plausible tidal features extracted with our new software hold promise for the robust identification of hallmark merger signatures and corresponding improvements to merger rate constraints.


Sign in / Sign up

Export Citation Format

Share Document