Spatial-angular analysis of displays for reproduction of light fields

Author(s):  
Amir Said ◽  
Eino-Ville Talvala
2017 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Clemens Birklbauer ◽  
David C. Schedl ◽  
Oliver Bimber

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sébastien Descotes-Genon ◽  
Martín Novoa-Brunet ◽  
K. Keri Vos

Abstract We consider the time-dependent analysis of Bd→ KSℓℓ taking into account the time-evolution of the Bd meson and its mixing into $$ {\overline{B}}_d $$ B ¯ d . We discuss the angular conventions required to define the angular observables in a transparent way with respect to CP conjugation. The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators, which are independent of form factors and charm-loop contributions. As such, these observables provide robust and powerful cross-checks of the New Physics scenarios currently favoured by global fits to b → sℓℓ data. In addition, we discuss the sensitivity of these observables with respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We illustrate how these new observables can provide a benchmark to discriminate among the various NP scenarios in b → sμμ. We discuss the extension of these results for Bs decays into f0, η or η′.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
JiJi Fan ◽  
Zhong-Zhi Xianyu

Abstract Light fields with spatially varying backgrounds can modulate cosmic preheating, and imprint the nonlinear effects of preheating dynamics at tiny scales on large scale fluctuations. This provides us a unique probe into the preheating era which we dub the “cosmic microscope”. We identify a distinctive effect of preheating on scalar perturbations that turns the Gaussian primordial fluctuations of a light scalar field into square waves, like a diode. The effect manifests itself as local non-Gaussianity. We present a model, “modulated partial preheating”, where this nonlinear effect is consistent with current observations and can be reached by near future cosmic probes.


Photonics ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 146
Author(s):  
Zhangrong Mei ◽  
Olga Korotkova

We propose a method for structuring the spatial coherence state of light via mixed linear combinations of N complex degrees of coherence (CDC) and specify the conditions under which such combinations represent a valid CDC. Several examples demonstrate that this method opens previously unknown avenues for modeling random sources, radiating to light fields with unique features.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


Sign in / Sign up

Export Citation Format

Share Document