Evaluation of a computer-aided detection algorithm for timely diagnosis of small acute intracranial hemorrhage on computed tomography in a critical care environment

2009 ◽  
Author(s):  
Joon K. Lee ◽  
Tao Chan ◽  
Brent J. Liu ◽  
H. K. Huang
Author(s):  
Katharina Müller-Peltzer ◽  
Lena Kretzschmar ◽  
Giovanna Negrão de Figueiredo ◽  
Alexander Crispin ◽  
Robert Stahl ◽  
...  

Purpose Since artificial intelligence is transitioning from an experimental stage to clinical implementation, the aim of our study was to evaluate the performance of a commercial, computer-aided detection algorithm of computed tomography pulmonary angiograms regarding the presence of pulmonary embolism in the emergency room. Materials and Methods This retrospective study includes all pulmonary computed tomography angiogram studies performed in a large emergency department over a period of 36 months that were analyzed by two radiologists experienced in emergency radiology to set a reference standard. Original reports and computer-aided detection results were compared regarding the detection of lobar, segmental, and subsegmental pulmonary embolism. All computer-aided detection findings were analyzed concerning the underlying pathology. False-positive findings were correlated to the contrast-to-noise ratio. Results Expert reading revealed pulmonary embolism in 182 of 1229 patients (49 % men, 10–97 years) with a total of 504 emboli. The computer-aided detection algorithm reported 3331 findings, including 258 (8 %) true-positive findings and 3073 (92 %) false-positive findings. Computer-aided detection analysis showed a sensitivity of 47 % (95 %CI: 33–61 %) on the lobar level and 50 % (95 %CI 43–56 %) on the subsegmental level. On average, there were 2.25 false-positive findings per study (median 2, range 0–25). There was no significant correlation between the number of false-positive findings and the contrast-to-noise ratio (Spearman’s Rank Correlation Coefficient = 0.09). Soft tissue (61.0 %) and pulmonary veins (24.1 %) were the most common underlying reasons for false-positive findings. Conclusion Applied to a population at a large emergency room, the tested commercial computer-aided detection algorithm faced relevant performance challenges that need to be addressed in future development projects. Key Points:  Citation Format


2010 ◽  
Vol 12 (S3) ◽  
Author(s):  
O Hatsiopoulou ◽  
O Kubassova ◽  
I Jolley ◽  
C Ingram

Author(s):  
Shabana Rasheed Ziyad ◽  
Venkatachalam Radha ◽  
Thavavel Vayyapuri

Background: Lung cancer has become a major cause of cancer-related deaths. Detection of potentially malignant lung nodules is essential for the early diagnosis and clinical management of lung cancer. In clinical practice, the interpretation of Computed Tomography (CT) images is challenging for radiologists due to a large number of cases. There is a high rate of false positives in the manual findings. Computer aided detection system (CAD) and computer aided diagnosis systems (CADx) enhance the radiologists in accurately delineating the lung nodules. Objectives: The objective is to analyze CAD and CADx systems for lung nodule detection. It is necessary to review the various techniques followed in CAD and CADx systems proposed and implemented by various research persons. This study aims at analyzing the recent application of various concepts in computer science to each stage of CAD and CADx. Methods: This review paper is special in its own kind because it analyses the various techniques proposed by different eminent researchers in noise removal, contrast enhancement, thorax removal, lung segmentation, bone suppression, segmentation of trachea, classification of nodule and nonnodule and final classification of benign and malignant nodules. Results: A comparison of the performance of different techniques implemented by various researchers for the classification of nodule and non-nodule has been tabulated in the paper. Conclusion: The findings of this review paper will definitely prove to be useful to the research community working on automation of lung nodule detection.


Author(s):  
Salsabil A. El-Regaily ◽  
Mohammed A. Salem ◽  
Mohammed H. Abdel Aziz ◽  
Mohammed I. Roushdy

Sign in / Sign up

Export Citation Format

Share Document