The chromaticity coordinates and color spectrum calibration using tri-stimulus sensors and double light sources

2010 ◽  
Author(s):  
Yao-Fang Hsieh ◽  
Ting-Wei Huang ◽  
Ou-Yang Mang ◽  
Yi-Ting Kuob
2016 ◽  
Vol 49 (1) ◽  
pp. 84-99 ◽  
Author(s):  
AN Padmasali ◽  
SG Kini

Light emitting diodes, with advantages in energy savings, luminous efficacy and greater reliability, are becoming preferred over conventional white light sources. Currently, only light output depreciation is considered for life estimation of light emitting diode luminaires but it is recommended to include colour shift variations for applications demanding colour stability. In this paper, an extended Kalman filter is employed to determine L70 life and colour temperature degradation over life of a light emitting diode luminaire. The colour shift in terms of Duv is determined by statistical polynomial cure fitting. The variation in chromaticity coordinates over life is determined and life based on colour shift is determined by acceptable Duv limits. The results are compared to life determined by the IES-TM-21 method and the correlated colour temperature limits taken from the luminaire data sheet.


2019 ◽  
pp. 113-124
Author(s):  
О. М. Яремчук ◽  
А. В. Кулік

Purpose. The determination of the formation features of basic models of color and identification of color in the initial stages (the 18th – 19th centuries) of scientific research of the problem. Methodology of the research is based on historical and cultural method. The source base is the artistic, scientific and technical literature of the studied period and also artefacts. Results. This publication reveals a generalized approach to theoretical developments on color perception and identification, and covers the initial period of color research and the formation of basic models of color (the 18th – 19th centuries). So in the middle of the 17th century I. Newton founded a seven-color ordering model, placing them to a closed color circle. At about the same time, other attempts at color systemization were proposed, such as color identification in the form of tables of existing paints, the work of I. Brennen and R. Waller. Subsequently, Jacob Christoph Le Blon concluded that in order to get results, you could use only three colors, namely red, yellow and blue. Based on this work, M. Harris presented his color circle, J. Lambert – a triangular color pyramid, and Ph.Runge built a color sphere using the principle of the globe. Goethe, contrary to Newton's physical doctrine of colors, conceived another system, it was based on the phenomenological perception of color. According to Goethe and his followers, the colors come from the struggle of "light" and "darkness". A. Schopenhauer took the step that J. Goethe lacked in his thinking: A. Schopenhauer formed a doctrine of color in terms of psychology, noting the enormous role that our brain plays in color perception, and proposing his model of identification by the principle of intensity / extensiveness/quality. for the formal description of the tri-color system of color, forming a mathe-confirmation of T. Young's theory and came to the conclusion that for the comparison of all shades, three light sources were needed and sufficient: in the red, green and blue parts of the spectrum. The perception of other colors is conditioned by the interaction of these constituents. In his work, J. Maxwell proved that all colors come from a mixture of three spectral colors: red, green, and blue. Based on his research, he introduced the first two-dimensional color spectrum visualization system. H. Grassmann's merit is the mathematical representation of the three spectral colors. E. Hering's theory highlights the psychological aspects of color vision: warm sensations occur for white, yellow, and red colors, while cold sensations occur for black, dark blue, and light blue. G. Peano introduced the concept of "color space" as a system of vector space equations.


2018 ◽  
Vol 19 (6) ◽  
pp. 548-551
Author(s):  
Marcin Legierski ◽  
Piotr Michałek

The article contains results of the research on the assessment of the blue light retinal hazard by lighting devices used in the automotive with LED light sources. The study was subject to daytime running lights and work lamps available on the market for self-assembly in vehicles. The study method was presented using a matrix luminance meter and spectroradiometer. The necessary photometric and radiometric tests were carried out. Assessment of blue light hazard according to the PN-EN 62471: 2010 was made. Obtained results were referred to maximum luminous intensity, chromaticity coordinates and correlated colour temperature of tested devices.


Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


Author(s):  
C.J. Stuart ◽  
B.E. Viani ◽  
J. Walker ◽  
T.H. Levesque

Many techniques of imaging used to characterize petroleum reservoir rocks are applied to dehydrated specimens. In order to directly study behavior of fines in reservoir rock at conditions similar to those found in-situ these materials need to be characterized in a fluid saturated state.Standard light microscopy can be used on wet specimens but depth of field and focus cannot be obtained; by using the Tandem Scanning Confocal Microscope (TSM) images can be produced from thin focused layers with high contrast and resolution. Optical sectioning and extended focus images are then produced with the microscope. The TSM uses reflected light, bulk specimens, and wet samples as opposed to thin section analysis used in standard light microscopy. The TSM also has additional advantages: the high scan speed, the ability to use a variety of light sources to produce real color images, and the simple, small size scanning system. The TSM has frame rates in excess of normal TV rates with many more lines of resolution. This is accomplished by incorporating a method of parallel image scanning and detection. The parallel scanning in the TSM is accomplished by means of multiple apertures in a disk which is positioned in the intermediate image plane of the objective lens. Thousands of apertures are distributed in an annulus, so that as the disk is spun, the specimen is illuminated simultaneously by a large number of scanning beams with uniform illumination. The high frame speeds greatly simplify the task of image recording since any of the normally used devices such as photographic cameras, normal or low light TV cameras, VCR or optical disks can be used without modification. Any frame store device compatible with a standard TV camera may be used to digitize TSM images.


1914 ◽  
Vol 77 (1988supp) ◽  
pp. 82-83
Author(s):  
Herbert E. Ives
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document