Raman and infrared spectroscopy of organic electronic devices

2010 ◽  
Author(s):  
Y. Furukawa
Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31-40
Author(s):  
Stephen R. Forrest

AbstractOrganic light-emitting diode (OLED) displays are now poised to be the dominant mobile display technology and are at the heart of the most attractive televisions and electronic tablets on the market today. But this begs the question: what is the next big opportunity that will be addressed by organic electronics? We attempt to answer this question based on the unique attributes of organic electronic devices: their efficient optical absorption and emission properties, their ability to be deposited on ultrathin foldable, moldable and bendable substrates, the diversity of function due to the limitless palette of organic materials and the low environmental impact of the materials and their means of fabrication. With these unique qualities, organic electronics presents opportunities that range from lighting to solar cells to medical sensing. In this paper, we consider the transformative changes to electronic and photonic technologies that might yet be realized using these unconventional, soft semiconductor thin films.


2009 ◽  
Vol 95 (23) ◽  
pp. 233305 ◽  
Author(s):  
Richard R. Lunt ◽  
Brian E. Lassiter ◽  
Jay B. Benziger ◽  
Stephen R. Forrest

2013 ◽  
Vol 44 (1) ◽  
pp. 427-430 ◽  
Author(s):  
Markus Burghart ◽  
Andreas Dutkowiak ◽  
Lutz Tandler ◽  
Jörk Richter ◽  
Georg Haasemann ◽  
...  

2017 ◽  
Vol 13 ◽  
pp. 2273-2296 ◽  
Author(s):  
Satoru Mori ◽  
Norio Shibata

Phthalocyanines and subphthalocyanines are attracting attention as functional dyes that are applicable to organic solar cells, photodynamic therapy, organic electronic devices, and other applications. However, phthalocyanines are generally difficult to handle due to their strong ability to aggregate, so this property must be controlled for further applications of phthalocyanines. On the other hand, trifluoroethoxy-substituted phthalocyanines are known to suppress aggregation due to repulsion of the trifluoroethoxy group. Furthermore, the electronic characteristics of phthalocyanines are significantly changed by the strong electronegativity of fluorine. Therefore, it is expected that trifluoroethoxy-substituted phthalocyanines can be applied to new industrial fields. This review summarizes the synthesis and application of trifluoroethoxy-substituted phthalocyanine and subphthalocyanine derivatives.


2018 ◽  
Vol 148 ◽  
pp. 81-90 ◽  
Author(s):  
Lucas Michelão Martins ◽  
Samuel de Faria Vieira ◽  
Gabriel Baldo Baldacim ◽  
Bruna Andressa Bregadiolli ◽  
José Cláudio Caraschi ◽  
...  

2018 ◽  
Vol 5 (8) ◽  
pp. 180868
Author(s):  
Lanchao Ma ◽  
Shuixing Dai ◽  
Xiaowei Zhan ◽  
Xinyang Liu ◽  
Yu Li

Organic heterojunction is indispensable in organic electronic devices, such as organic solar cells, organic light-emitting diodes and so on. Fabrication of core–shell nanostructure provides a feasible and novel way to prepare organic heterojunction, which is beneficial for miniaturization and integration of organic electronic devices. Fabrication of nanotubes which constitute the core–shell structure in large quantity is the key for the realization of application. In this work, a simple and convenient method to prepare nanotubes using conjugated copolymer of perylene diimide and dithienothiophene (P(PDI-DTT)) was demonstrated. The relationship between preparation conditions (solvent atmosphere, solution concentration and pore diameter of templates) and morphology of nanostructure was studied systematically. P(PDI-DTT) nanotubes could be fabricated in regular shape and large quantity by preparing the solution with appropriate concentration and placing anodic aluminium oxide template with nanopore diameter of 200 nm in the solvent atmosphere. The tubular structure was confirmed by scanning electron microscopy. P(PDI-DTT) nanotubes exhibited electron mobility of 0.02 cm 2 V –1 s –1 in field-effect transistors under ambient condition. Light-emitting nanostructures were successfully fabricated by incorporating tetraphenylethylene into polymer nanotubes.


Sign in / Sign up

Export Citation Format

Share Document