Beam scanning laser interferometer with high spatial resolution over a large field of view

2011 ◽  
Author(s):  
Osami Sasaki ◽  
Tsuyoshi Saito ◽  
Samuel Choi ◽  
Takamasa Suzuki
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2276
Author(s):  
Xinghao Fan ◽  
Chunyu Liu ◽  
Shuai Liu ◽  
Yunqiang Xie ◽  
Liangliang Zheng ◽  
...  

The design of compact hyperspectral cameras with high ground resolution and large field of view (FOV) is a challenging problem in the field of remote sensing. In this paper, the time-delayed integration (TDI) of the digital domain is applied to solve the issue of insufficient light energy brought by high spatial resolution, and a hyperspectral camera with linear variable filters suitable for digital domain TDI technology is further designed. The camera has a wavelength range of 450–950 nm, with an average spectral resolution of 10.2 nm. The paper also analyzed the effects of digital domain TDI on the signal–noise ratio (SNR) and the spectral resolution. During its working in orbits, we have obtained high-SNR images with a swath width of 150 km, and a ground sample distance (GSD) of 10 m @ 500 km. The design of the hyperspectral camera has an improved spatial resolution while reducing the cost.


2021 ◽  
Vol 119 (12) ◽  
pp. 124101
Author(s):  
Yi Jiang ◽  
Junjing Deng ◽  
Yudong Yao ◽  
Jeffrey A. Klug ◽  
Sheikh Mashrafi ◽  
...  

2021 ◽  
Author(s):  
Ruixiao Li ◽  
Xiaodong Gu ◽  
Satoshi Shinada ◽  
Fumio Koyama

2014 ◽  
Vol 80 (3) ◽  
pp. 302-307
Author(s):  
Kunihiko HONGO ◽  
Yosuke TSUKIYAMA ◽  
Hiraku SUZUKI ◽  
Isami NITTA

2021 ◽  
Author(s):  
Wenjun Shao ◽  
Ji Yi

Three-dimensional (3D) volumetric imaging of the human retina is instrumental to monitor and diagnose blinding conditions. Although coherent retinal imaging is well established by optical coherence tomography, it is still a large void for incoherent volumetric imaging in the human retina. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO), to fill that void and harness incoherent optical contrast in 3D. CoSLO uses oblique scanning laser and remote focusing to acquire depth signal in parallel, avoid the lengthy z-stacking, and image a large field of view (FOV). In addition, confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we achieved incoherent 3D human retinal imaging with >20° viewing angle within only 5 seconds. The depth resolution is ~45 microns in vivo. We demonstrated label-free incoherent contrast by CoSLO, revealing unique features in the retina. CoSLO will be an important technique for clinical care of retinal conditions and fundamental vision science, by offering unique volumetric incoherent contrasts.


2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


2014 ◽  
Vol 20 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Rolf S. Arvidson ◽  
Cornelius Fischer ◽  
Dale S. Sawyer ◽  
Gavin D. Scott ◽  
Douglas Natelson ◽  
...  

AbstractWe apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical dimensions. This approach combines the high vertical resolution of vertical scanning interferometry and its native advantages (large field of view, rapid and nondestructive data acquisition) with important increases in lateral resolution. This combination offers the means to address a common challenge in microscopy: the integration of properties and processes that depend on, and vary as a function of observational length.


1995 ◽  
Author(s):  
Hong Liu ◽  
Andrew Karellas ◽  
Lisa J. Harris ◽  
Carl J. D'Orsi

Sign in / Sign up

Export Citation Format

Share Document