Large field of view, high spatial resolution, surface measurements

1998 ◽  
Vol 38 (5-6) ◽  
pp. 691-698 ◽  
Author(s):  
James C. Wyant ◽  
Joanna Schmit
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2276
Author(s):  
Xinghao Fan ◽  
Chunyu Liu ◽  
Shuai Liu ◽  
Yunqiang Xie ◽  
Liangliang Zheng ◽  
...  

The design of compact hyperspectral cameras with high ground resolution and large field of view (FOV) is a challenging problem in the field of remote sensing. In this paper, the time-delayed integration (TDI) of the digital domain is applied to solve the issue of insufficient light energy brought by high spatial resolution, and a hyperspectral camera with linear variable filters suitable for digital domain TDI technology is further designed. The camera has a wavelength range of 450–950 nm, with an average spectral resolution of 10.2 nm. The paper also analyzed the effects of digital domain TDI on the signal–noise ratio (SNR) and the spectral resolution. During its working in orbits, we have obtained high-SNR images with a swath width of 150 km, and a ground sample distance (GSD) of 10 m @ 500 km. The design of the hyperspectral camera has an improved spatial resolution while reducing the cost.


2021 ◽  
Vol 119 (12) ◽  
pp. 124101
Author(s):  
Yi Jiang ◽  
Junjing Deng ◽  
Yudong Yao ◽  
Jeffrey A. Klug ◽  
Sheikh Mashrafi ◽  
...  

2001 ◽  
Vol 19 (2) ◽  
pp. 285-293 ◽  
Author(s):  
T.A. PIKUZ ◽  
A. YA. FAENOV ◽  
M. FRAENKEL ◽  
A. ZIGLER ◽  
F. FLORA ◽  
...  

The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3–5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1–2 J, 1013 W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8–15 Å). High quality monochromatic (δλ/λ ∼ 10−5–10−3) images with high spatial resolution (up to ∼4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.


2014 ◽  
Vol 20 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Rolf S. Arvidson ◽  
Cornelius Fischer ◽  
Dale S. Sawyer ◽  
Gavin D. Scott ◽  
Douglas Natelson ◽  
...  

AbstractWe apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical dimensions. This approach combines the high vertical resolution of vertical scanning interferometry and its native advantages (large field of view, rapid and nondestructive data acquisition) with important increases in lateral resolution. This combination offers the means to address a common challenge in microscopy: the integration of properties and processes that depend on, and vary as a function of observational length.


1995 ◽  
Author(s):  
Hong Liu ◽  
Andrew Karellas ◽  
Lisa J. Harris ◽  
Carl J. D'Orsi

1976 ◽  
Vol 25 (Part1) ◽  
pp. 92-120 ◽  
Author(s):  
J. L. Weinberg ◽  
D. E. Beeson

With few exceptions, measurements of cometary brightness and polarization have been restricted to regions in or near the coma and therefore to a relatively small range of phase angles. Photoelectric techniques are required for detailed wavelength coverage, whereas large-field photographic techniques are better suited for mapping the large regions of sky spanned by a comet tail. Observations with a small field of view provide high spatial resolution but generally restrict multicolor measurements of brightness and polarization to a small region of the comet. Observations with a large field of view (diameter larger than 1 or 2 deg) provide adequate color and spatial coverage but can result in the loss of detail. A compromise is afforded by Fabry photometry, using a modest telescope of small aperture and relatively large field of view.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1667 ◽  
Author(s):  
Dong Zhang ◽  
Liyin Yuan ◽  
Shengwei Wang ◽  
Hongxuan Yu ◽  
Changxing Zhang ◽  
...  

Wide Swath and High Resolution Airborne Pushbroom Hyperspectral Imager (WiSHiRaPHI) is the new-generation airborne hyperspectral imager instrument of China, aimed at acquiring accurate spectral curve of target on the ground with both high spatial resolution and high spectral resolution. The spectral sampling interval of WiSHiRaPHI is 2.4 nm and the spectral resolution is 3.5 nm (FWHM), integrating 256 channels coving from 400 nm to 1000 nm. The instrument has a 40-degree field of view (FOV), 0.125 mrad instantaneous field of view (IFOV) and can work in high spectral resolution mode, high spatial resolution mode and high sensitivity mode for different applications, which can adapt to the Velocity to Height Ratio (VHR) lower than 0.04. The integration has been finished, and several airborne flight validation experiments have been conducted. The results showed the system’s excellent performance and high efficiency.


1984 ◽  
Vol 79 ◽  
pp. 639-657 ◽  
Author(s):  
G. Wlérick ◽  
L. Renard ◽  
D. Horville ◽  
F. Gex ◽  
J.M. Munier ◽  
...  

Abstractthe large field Lallemand electronographic camera has proved to be an ideal receptor for bidimensional photometry with the C.F.H. 3.6 m. Telescope. It permits to measure faint stars up to about B = 25. Plates of a large variety of objects have been obtained ; for example : crowded fields such as the nearby galaxy Messier 33 ; fields where one must recognize faint galaxies from stars; objects for which a high spatial resolution is needed, such as the optical jet of Messier 87 or gravitational lenses. It is possible to predict the limits of the receptor with a very large telescope.


Sign in / Sign up

Export Citation Format

Share Document