Lateral Resolution Enhancement of Vertical Scanning Interferometry by Sub-Pixel Sampling

2014 ◽  
Vol 20 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Rolf S. Arvidson ◽  
Cornelius Fischer ◽  
Dale S. Sawyer ◽  
Gavin D. Scott ◽  
Douglas Natelson ◽  
...  

AbstractWe apply common image enhancement principles and sub-pixel sample positioning to achieve a significant enhancement in the spatial resolution of a vertical scanning interferometer. We illustrate the potential of this new method using a standard atomic force microscope calibration grid and other materials having motifs of known lateral and vertical dimensions. This approach combines the high vertical resolution of vertical scanning interferometry and its native advantages (large field of view, rapid and nondestructive data acquisition) with important increases in lateral resolution. This combination offers the means to address a common challenge in microscopy: the integration of properties and processes that depend on, and vary as a function of observational length.

Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


Author(s):  
Juanjuan Zheng ◽  
Vicente Micó ◽  
Peng Gao

Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3-D topography in reflective samples as well as the inner structure or refractive index distribution of transparent and translucent samples. However, as in conventional optical microscopy, QPM provides either a large field of view (FOV) or a high resolution but not both. Many approaches such as oblique illumination, structured illumination and speckle illumination have been proposed to improve the spatial resolution of phase microscopy by restricting other degrees of freedom (mostly time). Therefore, the space bandwidth product (SBP) of QPM becomes enlarged. This paper aims to provide an up-to-date review on the resolution enhancement approaches of QPM, discussing the pros and cons of each technique as well as the confusion on resolution definition claim on QPM and other coherent microscopy.


2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
Hans-Arno J Mueller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


1994 ◽  
Vol 332 ◽  
Author(s):  
John M. Guerra

ABSTRACTWith photon tunneling microscopy (PTM), dielectric, semiconductor, and other surfaces are imaged by means of the phenomenon of photon tunneling (or evanescent waves). Vertical resolution is detector limited to one nanometer and the vertical range is λ/2. Lateral resolution is better than λ/4 with a field-of-view up to approximately 125 µm. PTM produces images of samples independent of size and thickness in real-time without metallization, shadowing, vacuum, electrons, or scanning probes. Tunneling images are analog processed for realtime 3-D topographic imaging with continuous viewpoint and magnification control. In this paper PTM images of a variety of samples are presented and briefly discussed.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2276
Author(s):  
Xinghao Fan ◽  
Chunyu Liu ◽  
Shuai Liu ◽  
Yunqiang Xie ◽  
Liangliang Zheng ◽  
...  

The design of compact hyperspectral cameras with high ground resolution and large field of view (FOV) is a challenging problem in the field of remote sensing. In this paper, the time-delayed integration (TDI) of the digital domain is applied to solve the issue of insufficient light energy brought by high spatial resolution, and a hyperspectral camera with linear variable filters suitable for digital domain TDI technology is further designed. The camera has a wavelength range of 450–950 nm, with an average spectral resolution of 10.2 nm. The paper also analyzed the effects of digital domain TDI on the signal–noise ratio (SNR) and the spectral resolution. During its working in orbits, we have obtained high-SNR images with a swath width of 150 km, and a ground sample distance (GSD) of 10 m @ 500 km. The design of the hyperspectral camera has an improved spatial resolution while reducing the cost.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2842 ◽  
Author(s):  
Zhanpeng Xu ◽  
Erik Forsberg ◽  
Yang Guo ◽  
Fuhong Cai ◽  
Sailing He

A novel light-sheet microscopy (LSM) system that uses the laser triangulation method to quantitatively calculate and analyze the surface topography of opaque samples is discussed. A spatial resolution of at least 10 μm in z-direction, 10 μm in x-direction and 25 μm in y-direction with a large field-of-view (FOV) is achieved. A set of sample measurements that verify the system′s functionality in various applications are presented. The system has a simple mechanical structure, such that the spatial resolution is easily improved by replacement of the objective, and a linear calibration formula, which enables convenient system calibration. As implemented, the system has strong potential for, e.g., industrial sample line inspections, however, since the method utilizes reflected/scattered light, it also has the potential for three-dimensional analysis of translucent and layered structures.


2018 ◽  
Author(s):  
Xiongchao Chen ◽  
Hao Zhang ◽  
Tingting Zhu ◽  
Yao Yao ◽  
Di Jin ◽  
...  

We demonstrate a deep learning based contact imaging on a CMOS chip to achieve ∼1 μm spatial resolution over a large field of view of ∼24 mm2. By using regular LED illumination, we acquire the single lower-resolution image of the objects placed approximate to the sensor with unit fringe magnification. For the raw contact-mode lens-free image, the pixel size of the sensor chip limits the spatial resolution. We apply a generative and adversarial network (GAN), a type of deep learning algorithm, to circumvent this limitation and effectively recover much higher resolution image of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. This GAN-contact imaging approach eliminates the need of either lens or multi-frame acquisition, being very handy and cost-effective. We demonstrate the success of this approach by imaging the proliferation dynamics of cells directly cultured on the chip.


Sign in / Sign up

Export Citation Format

Share Document