Environmental barrier coating (EBC) durability modeling using a progressive failure analysis approach

2012 ◽  
Author(s):  
Ali Abdul-Aziz ◽  
Galib Abumeri ◽  
William Troha ◽  
Ramakrishna T. Bhatt ◽  
Joseph E. Grady ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Abdul-Aziz ◽  
Frank Abdi ◽  
Ramakrishna T. Bhatt ◽  
Joseph E. Grady

The necessity for a protecting guard for the popular ceramic matrix composites (CMCs) is getting a lot of attention from engine manufacturers and aerospace companies. The CMC has a weight advantage over standard metallic materials and more performance benefits. However, these materials undergo degradation that typically includes coating interface oxidation as opposed to moisture induced matrix which is generally seen at a higher temperature. Additionally, other factors such as residual stresses, coating process related flaws, and casting conditions may influence the degradation of their mechanical properties. These durability considerations are being addressed by introducing highly specialized form of environmental barrier coating (EBC) that is being developed and explored in particular for high temperature applications greater than 1100°C. As a result, a novel computational simulation approach is presented to predict life for EBC/CMC specimen using the finite element method augmented with progressive failure analysis (PFA) that included durability, damage tracking, and material degradation model. The life assessment is carried out using both micromechanics and macromechanics properties. The macromechanics properties yielded a more conservative life for the CMC specimen as compared to that obtained from the micromechanics with fiber and matrix properties as input.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 889
Author(s):  
Jie Zhong ◽  
Dongling Yang ◽  
Shuangquan Guo ◽  
Xiaofeng Zhang ◽  
Xinghua Liang ◽  
...  

SiC fiber-reinforced SiC ceramic matrix composites (SiCf/SiC CMCs) are being increasingly used in the hot sections of gas turbines because of their light weight and mechanical properties at high temperatures. The objective of this investigation was the development of a thermal/environmental barrier coating (T/EBC) composite coating system consisting of an environmental barrier coating (EBC) to protect the ceramic matrix composites from chemical attack and a thermal barrier coating (TBC) that insulates and reduces the ceramic matrix composites substrate temperature for increased lifetime. In this paper, a plasma spray-physical vapor deposition (PS-PVD) method was used to prepare multilayer Si–HfO2/Yb2Si2O7/Yb2SiO5/Gd2Zr2O7 composite coatings on the surface of SiCf/SiC ceramic matrix composites. The purpose of this study is to develop a coating with resistance to high temperatures and chemical attack. Different process parameters are adopted, and their influence on the microstructure characteristics of the coating is discussed. The water quenching thermal cycle of the coating at high temperatures was tested. The results show that the structure of the thermal/environmental barrier composite coating changes after water quenching because point defects and dislocations appear in the Gd2Zr2O7 and Yb2SiO5 coatings. A phase transition was found to occur in the Yb2SiO5 and Yb2Si2O7 coatings. The failure mechanism of the T/EBC composite coating is mainly spalling when the top layer penetrates cracks and cracking occurs in the interface of the Si–HfO2/Yb2Si2O7 coating.


2013 ◽  
Vol 95 ◽  
pp. 53-62 ◽  
Author(s):  
Diego Cárdenas ◽  
Hugo Elizalde ◽  
Piergiovanni Marzocca ◽  
Frank Abdi ◽  
Levon Minnetyan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document