Robust resolution enhancement optimization methods to process variations based on vector imaging model

2012 ◽  
Author(s):  
Xu Ma ◽  
Yanqiu Li ◽  
Xuejia Guo ◽  
Lisong Dong
2021 ◽  
Vol 11 (12) ◽  
pp. 5595
Author(s):  
Zi Wang ◽  
Guoqiang Lv ◽  
Miao Xu ◽  
Qibin Feng ◽  
Anting Wang ◽  
...  

The resolution-priority holographic stereogram uses spherical waves focusing on the central depth plane (CDP) to reconstruct 3D images. The image resolution near the CDP can be easily enhanced by modifying three parameters: the capturing depth, the pixel size of elemental image and the focal length of lens array. However, the depth range may decrease as a result. In this paper, the resolution characteristics were analyzed in a geometrical imaging model, and three corresponding methods were proposed: a numerical method was proposed to find the proper capturing depth; a partial aperture filtering technique was proposed after reducing pixel size; the moving array lenslet technique was introduced after increasing focal length and partial aperture filtering. Each method can enhance resolution within the total depth range. Simulation and optical experiments were performed to verify the proposed methods.


Author(s):  
J.K. Weiss ◽  
M. Gajdardziska-Josifovska ◽  
M. R. McCartney ◽  
David J. Smith

Interfacial structure is a controlling parameter in the behavior of many materials. Electron microscopy methods are widely used for characterizing such features as interface abruptness and chemical segregation at interfaces. The problem for high resolution microscopy is to establish optimum imaging conditions for extracting this information. We have found that off-axis electron holography can provide useful information for the study of interfaces that is not easily obtained by other techniques.Electron holography permits the recovery of both the amplitude and the phase of the image wave. Recent studies have applied the information obtained from electron holograms to characterizing magnetic and electric fields in materials and also to atomic-scale resolution enhancement. The phase of an electron wave passing through a specimen is shifted by an amount which is proportional to the product of the specimen thickness and the projected electrostatic potential (ignoring magnetic fields and diffraction effects). If atomic-scale variations are ignored, the potential in the specimen is described by the mean inner potential, a bulk property sensitive to both composition and structure. For the study of interfaces, the specimen thickness is assumed to be approximately constant across the interface, so that the phase of the image wave will give a picture of mean inner potential across the interface.


2018 ◽  
Author(s):  
Gérard Cornuéjols ◽  
Javier Peña ◽  
Reha Tütüncü
Keyword(s):  

Author(s):  
Gerard Cornuejols ◽  
Reha Tutuncu
Keyword(s):  

TAPPI Journal ◽  
2013 ◽  
Vol 12 (4) ◽  
pp. 19-27
Author(s):  
PATRICK HUBER ◽  
LAURENT LYANNAZ ◽  
BRUNO CARRÉ

The fraction of deinked pulp for coated paper production is continually increasing, with some mills using 100% deinked pulp for the base paper. The brightness of the coated paper made from deinked pulp may be reached through a combination of more or less extensive deinking, compensated by appropriate coating, to optimize costs overall. The authors proposed general optimization methods combined with Kubelka-Munk multilayer calculations to find the most economical combination of deinking and coating process that would produce a coated paper made from DIP, at a given target brightness, while maintaining mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document