Computational modeling of skin reflectance spectra for biological parameter estimation through machine learning

Author(s):  
Saurabh Vyas ◽  
Hien Van Nguyen ◽  
Philippe Burlina ◽  
Amit Banerjee ◽  
Luis Garza ◽  
...  
Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hae Deok Jung ◽  
Yoo Jin Sung ◽  
Hyun Uk Kim

Chemotherapy is a mainstream cancer treatment, but has a constant challenge of drug resistance, which consequently leads to poor prognosis in cancer treatment. For better understanding and effective treatment of drug-resistant cancer cells, omics approaches have been widely conducted in various forms. A notable use of omics data beyond routine data mining is to use them for computational modeling that allows generating useful predictions, such as drug responses and prognostic biomarkers. In particular, an increasing volume of omics data has facilitated the development of machine learning models. In this mini review, we highlight recent studies on the use of multi-omics data for studying drug-resistant cancer cells. We put a particular focus on studies that use computational models to characterize drug-resistant cancer cells, and to predict biomarkers and/or drug responses. Computational models covered in this mini review include network-based models, machine learning models and genome-scale metabolic models. We also provide perspectives on future research opportunities for combating drug-resistant cancer cells.


2021 ◽  
Author(s):  
Herdiantri Sufriyana ◽  
Yu Wei Wu ◽  
Emily Chia-Yu Su

Abstract We aimed to provide a resampling protocol for dimensional reduction resulting a few latent variables. The applicability focuses on but not limited for developing a machine learning prediction model in order to improve the number of sample size in relative to the number of candidate predictors. By this feature representation technique, one can improve generalization by preventing latent variables to overfit data used to conduct the dimensional reduction. However, this technique may warrant more computational capacity and time to conduct the procedure. The key stages consisted of derivation of latent variables from multiple resampling subsets, parameter estimation of latent variables in population, and selection of latent variables transformed by the estimated parameters.


2020 ◽  
Author(s):  
Grigory Sabinin ◽  
Tatiana Chichinina ◽  
Vadim Tulchinsky ◽  
Manuel Romero-Salcedo

2021 ◽  
Author(s):  
Mu Yue

In high-dimensional data, penalized regression is often used for variable selection and parameter estimation. However, these methods typically require time-consuming cross-validation methods to select tuning parameters and retain more false positives under high dimensionality. This chapter discusses sparse boosting based machine learning methods in the following high-dimensional problems. First, a sparse boosting method to select important biomarkers is studied for the right censored survival data with high-dimensional biomarkers. Then, a two-step sparse boosting method to carry out the variable selection and the model-based prediction is studied for the high-dimensional longitudinal observations measured repeatedly over time. Finally, a multi-step sparse boosting method to identify patient subgroups that exhibit different treatment effects is studied for the high-dimensional dense longitudinal observations. This chapter intends to solve the problem of how to improve the accuracy and calculation speed of variable selection and parameter estimation in high-dimensional data. It aims to expand the application scope of sparse boosting and develop new methods of high-dimensional survival analysis, longitudinal data analysis, and subgroup analysis, which has great application prospects.


Sign in / Sign up

Export Citation Format

Share Document