Assimilation of MODIS snow cover fraction for improving snow variables estimation in west China

2012 ◽  
Author(s):  
Chunlin Huang
2015 ◽  
Vol 9 (5) ◽  
pp. 1879-1893 ◽  
Author(s):  
K. Atlaskina ◽  
F. Berninger ◽  
G. de Leeuw

Abstract. Thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo data for the Northern Hemisphere during the spring months (March–May) were analyzed to determine temporal and spatial changes over snow-covered land surfaces. Tendencies in land surface albedo change north of 50° N were analyzed using data on snow cover fraction, air temperature, vegetation index and precipitation. To this end, the study domain was divided into six smaller areas, based on their geographical position and climate similarity. Strong differences were observed between these areas. As expected, snow cover fraction (SCF) has a strong influence on the albedo in the study area and can explain 56 % of variation of albedo in March, 76 % in April and 92 % in May. Therefore the effects of other parameters were investigated only for areas with 100 % SCF. The second largest driver for snow-covered land surface albedo changes is the air temperature when it exceeds a value between −15 and −10 °C, depending on the region. At monthly mean air temperatures below this value no albedo changes are observed. The Enhanced Vegetation Index (EVI) and precipitation amount and frequency were independently examined as possible candidates to explain observed changes in albedo for areas with 100 % SCF. Amount and frequency of precipitation were identified to influence the albedo over some areas in Eurasia and North America, but no clear effects were observed in other areas. EVI is positively correlated with albedo in Chukotka Peninsula and negatively in eastern Siberia. For other regions the spatial variability of the correlation fields is too high to reach any conclusions.


2014 ◽  
Vol 35 (9) ◽  
pp. 2472-2484 ◽  
Author(s):  
Melissa L. Wrzesien ◽  
Tamlin M. Pavelsky ◽  
Sarah B. Kapnick ◽  
Michael T. Durand ◽  
Thomas H. Painter

2017 ◽  
Vol 18 (1) ◽  
pp. 119-138 ◽  
Author(s):  
Jianhui Xu ◽  
Feifei Zhang ◽  
Hong Shu ◽  
Kaiwen Zhong

Abstract During snow cover fraction (SCF) data assimilation (DA), the simplified observation operator and presence of cloud cover cause large errors in the assimilation results. To reduce these errors, a new snow cover depletion curve (SDC), known as an observation operator in the DA system, is statistically fitted to in situ snow depth (SD) observations and Moderate Resolution Imaging Spectroradiometer (MODIS) SCF data from January 2004 to October 2008. Using this new SDC, a two-dimensional deterministic ensemble–variational hybrid DA (2DEnVar) method of integrating the deterministic ensemble Kalman filter (DEnKF) and a two-dimensional variational DA (2DVar) is proposed. The proposed 2DEnVar is then used to assimilate the MODIS SCF into the Common Land Model (CoLM) at five sites in the Altay region of China for data from November 2008 to March 2009. The analysis performance of the 2DEnVar is compared with that of the DEnKF. The results show that the 2DEnVar outperforms the DEnKF as it effectively reduces the bias and root-mean-square error during the snow accumulation and ablation periods at all sites except for the Qinghe site. In addition, the 2DEnVar, with more assimilated MODIS SCF observations, produces more innovations (observation minus forecast) than the DEnKF, with only one assimilated MODIS SCF observation. The problems of cloud cover and overestimation are addressed by the 2DEnVar.


2004 ◽  
Vol 21 (4) ◽  
pp. 529-535 ◽  
Author(s):  
Tongwen Wu ◽  
Guoxiong Wu

2018 ◽  
Vol 10 (2) ◽  
pp. 316 ◽  
Author(s):  
Ally M. Toure ◽  
Rolf H. Reichle ◽  
Barton A. Forman ◽  
Augusto Getirana ◽  
Gabrielle J. M. De Lannoy

2013 ◽  
Vol 118 (14) ◽  
pp. 7489-7504 ◽  
Author(s):  
Kristi R. Arsenault ◽  
Paul R. Houser ◽  
Gabriëlle J. M. De Lannoy ◽  
Paul A. Dirmeyer

2016 ◽  
Author(s):  
Rafael Pimentel ◽  
Javier Herrero ◽  
María José Polo

Abstract. Subgrid variability introduces non-negligible scale effects on the GIS-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow depletion curves (DCs). In this study, terrestrial photography (TP) of a cell-sized area (30 x 30 m) was used to define local snow DCs at a Mediterranean site. Snow cover fraction (SCF) and snow depth (h) values obtained with this technique constituted the two datasets used to define DCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting DCs were able to capture certain physical features of the snow, which were used in a decision-tree and included in the point snow model formulated by Herrero et al. (2009). The final performance of this model was tested against field observations recorded over four hydrological years (2009–2013). The calibration and validation of this DC-snow model was found to have a high level of accuracy with global RMSE values of 84.2 mm for the average snow depth and 0.18 m2 m-2 for the snow cover fraction in the control area. The use of DCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.


Sign in / Sign up

Export Citation Format

Share Document