simian foamy virus
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 2)

Epidemiologia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 46-67
Author(s):  
Antoinette C. van der Kuyl

Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.


2021 ◽  
Vol 15 (1) ◽  
pp. e0008923
Author(s):  
Megan Halbrook ◽  
Adva Gadoth ◽  
Anupama Shankar ◽  
HaoQiang Zheng ◽  
Ellsworth M. Campbell ◽  
...  

The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen’s swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.


2020 ◽  
Vol 9 (27) ◽  
Author(s):  
Anupama Shankar ◽  
Vedapuri Shanmugam ◽  
William M. Switzer

ABSTRACT We obtained the full-length genome of a simian foamy virus (SFV) from an infected human. This virus originated from a baboon (Papio species, strain SFVpxx_hu9406). The genome is 13,113 nucleotides long with the canonical SFV genome structure. Phylogenetically, SFVpxx_hu9406 clustered closely with SFVpan_V909/03F from a captive baboon and other Cercopithecidae SFVs.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Simona Kraberger ◽  
Nicholas M Fountain-Jones ◽  
Roderick B Gagne ◽  
Jennifer Malmberg ◽  
Nicholas G Dannemiller ◽  
...  

Abstract Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 931
Author(s):  
Miranda ◽  
Muniz ◽  
Moreira ◽  
Bueno ◽  
Kierulff ◽  
...  

Simian foamy viruses (SFV) infect a wide range of Old World and Neotropical primates (NP). Unlike Old World primates, little is known about the diversity and prevalence of SFV in NP, mainly from a free-living population. Phylogenetic analyses have shown that SFV coevolved with their hosts. However, viral strains infecting Leontopithecus chrysomelas did not behave as expected for this hypothesis. The purpose of this study was to determine the eco-epidemiological profile and molecular characterization of SFV in a recently captured invasive population of L. chrysomelas located in Niteroi/RJ using buccal swab as an alternative collection method. A prevalence of 34.8% (32/92) and a mean viral load of 4.7 log copies of SFV/106 cells were observed. With respect to time since capture, SFV prevalence was significantly higher in the group of animals sampled over 6 months after capture (55.2%) than in those more recently captured (25.4%) (p = 0.005). Infected solitary animals can contribute to SFV transmission between different groups in the population. SFV strains formed two distinct clades within the SFV infecting the Cebidae family. This is the first study to use buccal swabs as a tool to study SFV diversity and prevalence in a recently free-living NP population upon recent capture.


2019 ◽  
Vol 8 (40) ◽  
Author(s):  
Brice Jegado ◽  
Renaud Mahieux

The full-length sequence of a Papio anubis simian foamy provirus was obtained by using PCR followed by Sanger sequencing. This simian foamy virus from a P. anubis animal (SFVp.anubis) is 13,393 bp long. Like other proviruses, the genome of SFVp.anubis is organized with long terminal repeats (LTRs), as well as gag, pol, env, tas, and bet genes. SFVp.anubis is closer to Old World African strains than to New World ones.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 902 ◽  
Author(s):  
Shannon M. Murray ◽  
Maxine L. Linial

Foamy viruses (FVs), also known as spumaretroviruses, are complex retroviruses that are seemingly nonpathogenic in natural hosts. In natural hosts, which include felines, bovines, and nonhuman primates (NHPs), a large percentage of adults are infected with FVs. For this reason, the effect of FVs on infections with other viruses (co-infections) cannot be easily studied in natural populations. Most of what is known about interactions between FVs and other viruses is based on studies of NHPs in artificial settings such as research facilities. In these settings, there is some indication that FVs can exacerbate infections with lentiviruses such as simian immunodeficiency virus (SIV). Nonhuman primate (NHP) simian FVs (SFVs) have been shown to infect people without any apparent pathogenicity. Humans zoonotically infected with simian foamy virus (SFV) are often co-infected with other viruses. Thus, it is important to know whether SFV co-infections affect human disease.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 605 ◽  
Author(s):  
Anupama Shankar ◽  
Samuel D. Sibley ◽  
Tony L. Goldberg ◽  
William M. Switzer

Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp). The complete sequence of the SFVhpi_SAM106 genome fills an important knowledge gap in SFV genetics and will facilitate future studies of FV infection, transmission, and evolutionary history.


Sign in / Sign up

Export Citation Format

Share Document