TU-G-211-04: Evaluation of Image Quality on a Time-Of-Flight PET/CT Scanner

2011 ◽  
Vol 38 (6Part30) ◽  
pp. 3787-3787
Author(s):  
T Chang ◽  
J Clark ◽  
O Mawlawi
2021 ◽  
Author(s):  
Louise Fanchon ◽  
Brad Beattie ◽  
Keith Pentlow ◽  
Steven Larson ◽  
John Laurence Humm

Abstract Purpose To determine the accuracy of quantitative 124I PET imaging in the presence of therapeutic levels of 131I.Material and Methods Multiple PET images were acquired using a NEMA IEC phantom with spheres containing 0.4 MBq/cc of 124I and increasing amount of 131I activity in the phantom background (0 to 3.76 GBq). Acquisitions were performed on a GE Discovery 710 PET/CT scanner. At each 131I activity level two scans were acquired, one with the phantom at the center of the field of view (FOV) and one 11 cm off-center. Images were reconstructed with an ordered subset expectation maximization (OSEM) algorithm using between 1 and 25 iterations of 16 subsets. Results were evaluated visually and by comparing the 124I activity relative to the baseline PET performed in the absence of 131I.Results The presence of 131I within the PET FOV added to the random coincidence rate, to dead-time and to pile-up within the PET detectors. Using our standard clinical reconstruction parameters, the image quality and quantitative accuracy suffered at 131I background activities above 1.4 GBq. However, increasing the number of iterations resulted in dramatic improvements in image quality and quantitative accuracy. Projection space measurements suggest that the dead time corrections implemented on the scanner perform well even at the highest singles count rate tested (52 Mcps).Conclusion This study shows that 124I quantitative PET is feasible in the presence of large amounts of 131I on a GE D710. The high random coincidence fraction slows the reconstruction convergence rate, therefore iterations equivalent to at least 8x16 are recommended.


Author(s):  
B. W. Jakoby ◽  
Y. Bercier ◽  
M. Conti ◽  
M. Casey ◽  
T. Gremillion ◽  
...  
Keyword(s):  

2019 ◽  
Vol 68 ◽  
pp. 146-154
Author(s):  
Alessandra Zorz ◽  
Roberta Matheoud ◽  
Elisa Richetta ◽  
Saraswati Baichoo ◽  
Matteo Poli ◽  
...  

2014 ◽  
Vol 53 (03) ◽  
pp. 79-87 ◽  
Author(s):  
M. Souvatzoglou ◽  
A. Martinez-Möller ◽  
M. Schwaiger ◽  
S. I. Ziegler ◽  
S. Fürst ◽  
...  

SummaryThe surface coils of the Biograph mMR integrated PET/MR system were optimised for PET, but are otherwise unaccounted for. The patient table is still more massive than those of PET/CT devices. The goal was to assess those hardware effects on quantification, count statistics, image quality and scan time both with phantoms and in patients and to investigate their clinical relevance. Patients, material, methods: PET phantom data were acquired with and without the patient table. Image noise was expressed as relative standard deviation and compared to a state-of-the-art PET/CT scanner. Protocols of the phantom/patient study regarding the surface coils were similar. Thoraces/ab- domens of 11 patients were scanned with and without a coil (1 BP, 4 min). Mean uptake and standard deviation in a cubical VOI were derived and expressed as SUV. Results: The patient table reduced the number of true coincidences (trues) by 19% (PET/MR) and by 11% (PET/CT). The scan duration for the mMR had to be increased by approximately 30% to achieve a noise level comparable to that of the PET/CT. Decreased SUVs with coil observed in the phantom were confirmed by the patient study. By removing the coil, the mean liver SUV increased by (6 ± 2)%. With (+3 ± 14)%, the average change was similar in lesions, but exceeded 20% in almost one fifth of them. The number of trues grew by (6 ± 1)% for the patients and by 7% for the phantom. Conclusion: Due to the additional attenuation caused by MR hardware, PET scan durations would have to be increased compared to current PET/CTs to provide similar image noise levels. The effect of the coils is mostly in the order of statistical fluctuations. In tumour lesions, it is more pronounced and shows a larger variability. Therefore, coils should be included in the attenuation correction to ensure accurate quantification and thus comparability across PET/MR and PET/CT scanners and within patient populations.


2020 ◽  
Author(s):  
Roberta Matheoud ◽  
Naema Al-Maymani ◽  
Alessia Oldani ◽  
Gian Mauro Sacchetti ◽  
Marco Brambilla ◽  
...  

Abstract BackgroundTime-of-flight (TOF) PET technology determines a reduction in the noise and improves the reconstructed image quality in low counts acquisitions, such as in overweight patients, allowing a reduction of administered activity and/or imaging time. However, international guidelines and recommendations on 18F-fluoro-2-deoxyglucose (FDG) activity administration scheme are old or only partially account for TOF technology and advanced reconstruction modalities. The aim of this study was to optimize FDG whole-body studies on a TOF PET/CT scanner by using a multivariate approach to quantify how physical figures of merit related to image quality change with acquisition/reconstruction/patient-dependent parameters in a phantom experiment. MethodsThe NEMA-IQ phantom was used to evaluate contrast recovery coefficient (CRC), background variability (BV) and contrast-to-noise ratio (CNR) as a function of changing emission scan duration (ESD), activity concentration (AC), target internal diameter (ID), target-background activity ratio (TBR), and body mass index (BMI). The phantom was filled with an average concentration of 5.3 kBq/mL of FDG solution and the spheres with TBR of 21.2, 8.8, and 5.0 in 3 different sessions. Images were acquired at varying background activity concentration from 5.1 to 1.3 kBq/mL and images were reconstructed for ESD of 30-151 seconds per bed position with and without Point Spread Function (PSF) correction. The parameters were all considered in a single analysis using multiple linear regression methods. ResultsAs expected, CRC depended only on sphere ID and on PSF application, while BV depended on sphere ID, ESD, AC and BMI of the phantom, in order of decreasing relevance. Noteworthy, ESD and AC resulted as the most significant predictors of CNR variability with a similar relevance, followed by the weight of the patient and TBR of the lesion. ConclusionsAC and ESD proved to be effective tools in modulating CNR. ESD could be increased rather than AC to improve image quality in overweight/obese patients to fulfil ALARA principles.


Author(s):  
Ian Alberts ◽  
George Prenosil ◽  
Clemens Mingels ◽  
Karl Peter Bohn ◽  
Marco Viscione ◽  
...  

Abstract Purpose While acquisition of images in [68 Ga]Ga-PSMA-11 following longer uptake times can improve lesion uptake and contrast, resultant imaging quality and count statistics are limited by the isotope’s half-life (68 min). Here, we present a series of cases demonstrating that when performed using a long axial field-of-view (LAFOV) PET/CT system, late imaging is feasible and can even provide improved image quality compared to regular acquisitions. Methods In this retrospective case series, we report our initial experiences with 10 patients who underwent standard imaging at 1 h p.i. following administration of 192 ± 36 MBq [68 Ga]Ga-PSMA-11 with additional late imaging performed at 4 h p.i. Images were acquired in a single bed position for 6 min at 1 h p.i. and 16 min p.i. at 4 h p.i. using a LAFOV scanner (106 cm axial FOV). Two experienced nuclear medicine physicians reviewed all scans in consensus and evaluated overall image quality (5-point Likert scale), lesion uptake in terms of standardised uptake values (SUV), tumour to background ratio (TBR) and target-lesion signal to background noise (SNR). Results Subjective image quality as rated on a 5-point Likert scale was only modestly lower for late acquisitions (4.2/5 at 4 h p.i.; 5/5 1 h p.i.), TBR was significantly improved (4 h: 3.41 vs 1 h: 1.93, p < 0.001) and SNR was improved with borderline significance (4 h: 33.02 vs 1 h: 24.80, p = 0.062) at later imaging. Images were obtained with total acquisition times comparable to routine examinations on standard axial FOV scanners. Conclusion Late acquisition in tandem with a LAFOV PET/CT resulted in improvements in TBR and SNR and was associated with only modest impairment in subjective visual imaging quality. These data show that later acquisition times for [68 Ga]Ga-PSMA-11 may be preferable when performed on LAFOV systems.


2018 ◽  
Vol 4 (Supplement 2) ◽  
pp. 68s-68s
Author(s):  
B. Ali ◽  
A. Afshan ◽  
M.B. Kakakhel

Background: In PET imaging both quantitative and qualitative interpretations are used. Qualitative and quantitative interpretations depend upon PET/CT image quality that along with many biologic factors strongly depends upon image reconstruction parameters. Aim: The objective of this experimental work was to study the impact of one of the key reconstruction parameter, i.e., number of reconstruction iteration, on standardized uptake value and image quality of PET/CT scan. Methods: Images of NEMA IEC Image Quality Phantom were acquired in list mode for 10 mins on Discovery STE PET/CT scanner, using tumor to background ratio of 4:1 and 18F-FDG as radiotracer. List mode data were further transformed into data sets of varying acquisition time (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 mins) per bed position. Transformed data set of 5.0 mins were used to study the impact of varying number of iterations (2, 3, 4, 5, 7, 10, 15, 20) using OSEM approach of iterative reconstruction. Standardized uptake value (SUV) and underestimation in SUV were calculated as quantitative measures, while hot lesion contrast, cold lesion contrast and background variability were calculated as qualitative measures. Results: Standardized uptake value, hot and cold lesion contrast, image spatial resolution and background variability showed increasing trend with increase in reconstruction iterations. Maximum increase of 20.25%, 16.33%, 9.79% and 6.88% was observed in SUV for 10 mm, 13 mm, 17 mm and 22 mm lesions as number of iteration change from 2 to 3. Smallest and the largest diameter lesions showed maximum underestimations of 54.67% and 8.20% at 2 iterations respectively. Percentage hot lesion contrast showed rapid increase as the number of iteration change from 2 to 7 and increased slowly afterward. Background variability range from 4.4% to 6.4%, 4.1%–5.7%, 3.6%–4.6%, 3%–3.8%, 2.7%–3.2%, 2.4%–2.7% for 10.0 mm, 13.0 mm, 17.0 mm, 22.0 mm, 28.0 mm and 37.0 mm sphere respectively. Conclusion: Optimized reconstruction parameters for routine clinical studies 3 iterations with image matrix size of 128 × 128 with filters FWHM of 6 mm and for high resolution studies 3 iterations image matrix size of 256×256 with filters FWHM of 6 mm.


Sign in / Sign up

Export Citation Format

Share Document