TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

2014 ◽  
Vol 41 (6Part27) ◽  
pp. 470-471 ◽  
Author(s):  
X Yang ◽  
P Rossi ◽  
T Ogunleye ◽  
A Jani ◽  
W Curran ◽  
...  
2017 ◽  
Vol 12 (6) ◽  
pp. 065006 ◽  
Author(s):  
Li-Ping Gao ◽  
Ming-Jun Du ◽  
Jing-Jing Lv ◽  
Sebastian Schmull ◽  
Ri-Tai Huang ◽  
...  

2002 ◽  
Vol 97 (4) ◽  
pp. 481-489 ◽  
Author(s):  
Stephen M. Warren ◽  
Marc H. Hedrick ◽  
Karl Sylvester ◽  
Michael T. Longaker ◽  
Constance M. Chen

✓ Generating replacement tissues requires an interdisciplinary approach that combines developmental, cell, and molecular biology with biochemistry, immunology, engineering, medicine, and the material sciences. Because basic cues for tissue engineering may be derived from endogenous models, investigators are learning how to imitate nature. Endogenous models may provide the biological blueprints for tissue restoration, but there is still much to learn. Interdisciplinary barriers must be overcome to create composite, vascularized, patient-specific tissue constructs for replacement and repair. Although multistep, multicomponent tissue fabrication requires an amalgamation of ideas, the following review is limited to the new directions in bioabsorbable technology. The review highlights novel bioabsorbable design and therapeutic (gene, protein, and cell-based) strategies currently being developed to solve common spine-related problems.


2021 ◽  
Author(s):  
Judith Hagenbuchner ◽  
Daniel Nothdurfter ◽  
Michael J. Ausserlechner

Abstract Conventional approaches in drug development involve testing on 2D-cultured mammalian cells, followed by experiments in rodents. Although this is the common strategy, it has significant drawbacks: in 2D cell culture with human cells, the cultivation at normoxic conditions on a plastic or glass surface is an artificial situation that significantly changes energy metabolism, shape and intracellular signaling, which in turn directly affects drug response. On the other hand, rodents as the most frequently used animal models have evolutionarily separated from primates about 100 million years ago, with significant differences in physiology, which frequently leads to results not reproducible in humans. As an alternative, spheroid technology and micro-organoids have evolved in the last decade to provide 3D context for cells similar to native tissue. However, organoids used for drug testing are usually just in the 50–100 micrometers range and thereby too small to mimic micro-environmental tissue conditions such as limited nutrient and oxygen availability. An attractive alternative offers 3D bioprinting as this allows fabrication of human tissue equivalents from scratch with hollow structures for perfusion and strict spatiotemporal control over the deposition of cells and extracellular matrix proteins. Thereby, tissue surrogates with defined geometry are fabricated that offer unique opportunities in exploring cellular cross-talk, mechanobiology and morphogenesis. These tissue-equivalents are also very attractive tools in drug testing, as bioprinting enables standardized production, parallelization, and application-tailored design of human tissue, of human disease models and patient-specific tissue avatars. This review, therefore, summarizes recent advances in 3D bioprinting technology and its application for drug screening.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi44-vi44
Author(s):  
Chengyue Wu ◽  
David Hormuth ◽  
Chase Christenson ◽  
Michael Abdelmalik ◽  
William Phillips ◽  
...  

Abstract Convection-enhanced delivery (CED) of Rhenium-186 nanoliposomes (RNL) is a promising approach to provide precise delivery of large, localized doses of radiation with the goal of extending overall survival for patients with recurrent GBM. A central component of successful CED, is achieving optimal catheter placement for delivery of the therapy. While surgical planning software exists for this purpose, current approaches are designed for small molecules and therefore are not appropriate for larger particles like RNL. To address this concern, we have developed a mathematical model to predict the distribution of RNL via CED on a patient-specific basis. The model is defined on the 3D brain domain which consists of 1) pressure and flow fields generated by accounting for catheter infusion, flow through brain, and fluid loss into capillaries, and 2) the transport of RNL governed by an advection-diffusion equation. We utilize pre-operative MRI to assign patient-specific tissue geometry and properties (e.g., diffusivity, conductivity), and calibrate the model with SPECT measurements within 24 h post the RNL delivery. This model is implemented on one patient enrolled in NCT01906385. The accuracy of model calibration and prediction is evaluated by the Dice score and concordance correlation coefficient (CCC) between modeled and measured distributions of RNL. Our model calibration achieves Dice scores of 0.80, 0.81, 0.69 and CCC of 0.92, 0.93, 0.73 for RNL distributions at the mid-delivery, end of delivery, and 24 h after the delivery, respectively. Long-term model prediction achieves Dice scores of 0.69 and 0.52 at 144 h and 196 h after the delivery, respectively, and CCC of 0.57 and 0.31. Preliminary results demonstrate a proof-of-concept for a patient-specific model to predict the spatiotemporally-resolved distribution of nanoparticles. Ongoing efforts focus on improving our model by accounting backflow and angle of catheter placement, and applying to more patients. Funding: NIH R01CA235800, CPRIT RR160005.


2021 ◽  
Vol 12 ◽  
pp. 204173142110037
Author(s):  
Aala’a Emara ◽  
Rishma Shah

The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering advancements and the application in the craniofacial region is quickly gaining momentum although most research is still at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this article. The future perspectives and how current technological advancements and different material applications are enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore, 3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require further research in order to catch up with engineering of other parts of the human body.


2018 ◽  
Vol 9 (3) ◽  
pp. 46 ◽  
Author(s):  
Angela de la Lastra ◽  
Katherine Hixon ◽  
Lavanya Aryan ◽  
Amanda Banks ◽  
Alexander Lin ◽  
...  

The current gold standard treatment for oral clefts is autologous bone grafting. This treatment, however, presents another wound site for the patient, greater discomfort, and pediatric patients have less bone mass for bone grafting. A potential alternative treatment is the use of tissue engineered scaffolds. Hydrogels are well characterized nanoporous scaffolds and cryogels are mechanically durable, macroporous, sponge-like scaffolds. However, there has been limited research on these scaffolds for cleft craniofacial defects. 3D-printed molds can be combined with cryogel/hydrogel fabrication to create patient-specific tissue engineered scaffolds. By combining 3D-printing technology and scaffold fabrication, we were able to create scaffolds with the geometry of three cleft craniofacial defects. The scaffolds were then characterized to assess the effect of the mold on their physical properties. While the scaffolds were able to completely fill the mold, creating the desired geometry, the overall volumes were smaller than expected. The cryogels possessed porosities ranging from 79.7% to 87.2% and high interconnectivity. Additionally, the cryogels swelled from 400% to almost 1500% of their original dry weight while the hydrogel swelling did not reach 500%, demonstrating the ability to fill a defect site. Overall, despite the complex geometry, the cryogel scaffolds displayed ideal properties for bone reconstruction.


Sign in / Sign up

Export Citation Format

Share Document