scholarly journals 3D bioprinting: novel approaches for engineering complex human tissue equivalents and drug testing

2021 ◽  
Author(s):  
Judith Hagenbuchner ◽  
Daniel Nothdurfter ◽  
Michael J. Ausserlechner

Abstract Conventional approaches in drug development involve testing on 2D-cultured mammalian cells, followed by experiments in rodents. Although this is the common strategy, it has significant drawbacks: in 2D cell culture with human cells, the cultivation at normoxic conditions on a plastic or glass surface is an artificial situation that significantly changes energy metabolism, shape and intracellular signaling, which in turn directly affects drug response. On the other hand, rodents as the most frequently used animal models have evolutionarily separated from primates about 100 million years ago, with significant differences in physiology, which frequently leads to results not reproducible in humans. As an alternative, spheroid technology and micro-organoids have evolved in the last decade to provide 3D context for cells similar to native tissue. However, organoids used for drug testing are usually just in the 50–100 micrometers range and thereby too small to mimic micro-environmental tissue conditions such as limited nutrient and oxygen availability. An attractive alternative offers 3D bioprinting as this allows fabrication of human tissue equivalents from scratch with hollow structures for perfusion and strict spatiotemporal control over the deposition of cells and extracellular matrix proteins. Thereby, tissue surrogates with defined geometry are fabricated that offer unique opportunities in exploring cellular cross-talk, mechanobiology and morphogenesis. These tissue-equivalents are also very attractive tools in drug testing, as bioprinting enables standardized production, parallelization, and application-tailored design of human tissue, of human disease models and patient-specific tissue avatars. This review, therefore, summarizes recent advances in 3D bioprinting technology and its application for drug screening.

2019 ◽  
Vol 47 (W1) ◽  
pp. W242-W247 ◽  
Author(s):  
Omer Basha ◽  
Omry Mauer ◽  
Eyal Simonovsky ◽  
Rotem Shpringer ◽  
Esti Yeger-Lotem

Abstract ResponseNet v.3 is an enhanced version of ResponseNet, a web server that is designed to highlight signaling and regulatory pathways connecting user-defined proteins and genes by using the ResponseNet network optimization approach (http://netbio.bgu.ac.il/respnet). Users run ResponseNet by defining source and target sets of proteins, genes and/or microRNAs, and by specifying a molecular interaction network (interactome). The output of ResponseNet is a sparse, high-probability interactome subnetwork that connects the two sets, thereby revealing additional molecules and interactions that are involved in the studied condition. In recent years, massive efforts were invested in profiling the transcriptomes of human tissues, enabling the inference of human tissue interactomes. ResponseNet v.3 expands ResponseNet2.0 by harnessing ∼11,600 RNA-sequenced human tissue profiles made available by the Genotype-Tissue Expression consortium, to support context-specific analysis of 44 human tissues. Thus, ResponseNet v.3 allows users to illuminate the signaling and regulatory pathways potentially active in the context of a specific tissue, and to compare them with active pathways in other tissues. In the era of precision medicine, such analyses open the door for tissue- and patient-specific analyses of pathways and diseases.


2018 ◽  
Vol 373 (1750) ◽  
pp. 20170224 ◽  
Author(s):  
Gregor Skeldon ◽  
Baltasar Lucendo-Villarin ◽  
Wenmiao Shu

Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of ‘bio-inks’ and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.


2021 ◽  
Vol 3 ◽  
pp. 100007
Author(s):  
Kathleen L. Miller ◽  
Yi Xiang ◽  
Claire Yu ◽  
Jacob Pustelnik ◽  
Jerry Wu ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 368
Author(s):  
Joline Roze ◽  
Elena Sendino Garví ◽  
Ellen Stelloo ◽  
Christina Stangl ◽  
Ferdinando Sereno ◽  
...  

Adult granulosa cell tumors (AGCTs) arise from the estrogen-producing granulosa cells. Treatment of recurrence remains a clinical challenge, as systemic anti-hormonal treatment or chemotherapy is only effective in selected patients. We established a method to rapidly screen for drug responses in vitro using direct patient-derived cell lines in order to optimize treatment selection. The response to 11 monotherapies and 12 combination therapies, including chemotherapeutic, anti-hormonal, and targeted agents, were tested in 12 AGCT-patient-derived cell lines and an AGCT cell line (KGN). Drug screens were performed within 3 weeks after tissue collection by measurement of cell viability 72 h after drug application. The potential synergy of drug combinations was assessed. The human maximum drug plasma concentration (Cmax) and steady state (Css) thresholds obtained from available phase I/II clinical trials were used to predict potential toxicity in patients. Patient-derived AGCT cell lines demonstrated resistance to all monotherapies. All cell lines showed synergistic growth inhibition by combination treatment with carboplatin, paclitaxel, and alpelisib at a concentration needed to obtain 50% cell death (IC50) that are below the maximum achievable concentration in patients (IC50 < Cmax). We show that AGCT cell lines can be rapidly established and used for patient-specific in vitro drug testing, which may guide treatment decisions. Combination treatment with carboplatin, paclitaxel, and alpelisib was consistently effective in AGCT cell lines and should be further studied as a potential effective combination for AGCT treatment in patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Birbal Singh ◽  
Gorakh Mal ◽  
Vinod Verma ◽  
Ruchi Tiwari ◽  
Muhammad Imran Khan ◽  
...  

Abstract Background The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. Main body Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. Conclusions The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.


2017 ◽  
Vol 12 (6) ◽  
pp. 065006 ◽  
Author(s):  
Li-Ping Gao ◽  
Ming-Jun Du ◽  
Jing-Jing Lv ◽  
Sebastian Schmull ◽  
Ri-Tai Huang ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15567-e15567
Author(s):  
Lars Henrik Jensen ◽  
Anders Kristian Moeller Jakobsen ◽  
Birgitte Mayland Havelund ◽  
Cecilie Abildgaard ◽  
Chris Vagn-Hansen ◽  
...  

e15567 Background: Precision oncology based on in-vitro, functional assays has potential advantages compared to the much more common molecular approach, but the clinical benefit is unknown. We here report the results from the largest prospective interventional clinical trial testing the clinical outcome in colorectal cancer patients treated with drugs showing cytotoxic effect in matched patient-derived tumoroids. Methods: This single-center, phase II trial included patients with metastatic colorectal cancer previously exposed to all standard therapies. Specimens from one to three 18-16 G core needle biopsies were manually dissected, enzymatically treated, cultivated, and incubated to form 3D spherical microtumors, i.e. tumoroids. In the assay for in-vitro sensitivity testing, the tumoroids were challenged with single drugs and combinations thereof to determine patient-specific responses. Using tumoroid screening technology (IndiTreat, 2cureX, Copenhagen, Denmark), results were generated by comparing the sensitivity of the individual patient’s tumoroids with a reference panel from other patients. The testing included standard cytostatics and drugs with proven effect in previous early-phase clinical trials, a total of 15 drugs. The primary endpoint was the fraction of patients with progression-free survival (PFS) at two months. Based on placebo arms in randomized last-line trials, a minimal relevant difference of 20% (20% to 40%) was stated. Using Simon's two-stage design, a sample size of 45 patients was calculated with at least 14 PFS at two months (significance 5%, power 90%). Results: Ninety patients were enrolled from 9/2017 to 9/2020. Biopsies from 82 patients were obtained and sent for tumoroid formation of which 44 (54%, 95% CI 42-65) were successful and at least one treatment was suggested. Thirty-four patients initiated treatment according to the response obtained in the drug assays within a median of 51 days from inclusion (IQR 39-63). The primary endpoint, PFS at two months, was met in 17 of 34 patients (50%, 95%CI 32-68). There were no radiological responses. Median PFS was 81 days (95% CI 51-112) and median OS was 189 days (95% CI 103-277). Conclusions: Precision oncology using a functional approach with patient-derived tumoroids and in-vitro drug sensitivity testing seems feasible. The approach is limited by the fraction of patients with successful tumoroid development. The primary endpoint was met, as half of the patients were without progression at two months. Further clinical studies are justified. Clinical trial information: NCT03251612.


2016 ◽  
Author(s):  
◽  
Jason Stanford

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Advance treatment techniques, such as IMRT and dynamic conformal arc delivery, are novel radiation treatment procedures at the forefront of accurate and precise radiotherapy. However, the risk of suboptimal treatment resulting in injury is far greater with these techniques due to their complexity. An in vivo quality assurance system is the most appropriate validation of the delivered dose to the patient from these techniques. The intent of this research is to propose an in vivo dosimetry quality assurance procedure using radiochromic film. This research proved that radiochromic in vivo dosimetry is a viable method of detecting spatial patient specific errors in radiotherapy; however, the process is time consuming and not sensitive enough for dosimetric errors associated with weight change. Although time consuming, in vivo radiochromic dosimetry is an attractive alternative for small cancer centers and developing countries without the large startup capital to acquire the electronic portal imaging device necessary for EPID in vivo dosimetry.


2002 ◽  
Vol 97 (4) ◽  
pp. 481-489 ◽  
Author(s):  
Stephen M. Warren ◽  
Marc H. Hedrick ◽  
Karl Sylvester ◽  
Michael T. Longaker ◽  
Constance M. Chen

✓ Generating replacement tissues requires an interdisciplinary approach that combines developmental, cell, and molecular biology with biochemistry, immunology, engineering, medicine, and the material sciences. Because basic cues for tissue engineering may be derived from endogenous models, investigators are learning how to imitate nature. Endogenous models may provide the biological blueprints for tissue restoration, but there is still much to learn. Interdisciplinary barriers must be overcome to create composite, vascularized, patient-specific tissue constructs for replacement and repair. Although multistep, multicomponent tissue fabrication requires an amalgamation of ideas, the following review is limited to the new directions in bioabsorbable technology. The review highlights novel bioabsorbable design and therapeutic (gene, protein, and cell-based) strategies currently being developed to solve common spine-related problems.


Sign in / Sign up

Export Citation Format

Share Document