scholarly journals Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration

2018 ◽  
Vol 9 (3) ◽  
pp. 46 ◽  
Author(s):  
Angela de la Lastra ◽  
Katherine Hixon ◽  
Lavanya Aryan ◽  
Amanda Banks ◽  
Alexander Lin ◽  
...  

The current gold standard treatment for oral clefts is autologous bone grafting. This treatment, however, presents another wound site for the patient, greater discomfort, and pediatric patients have less bone mass for bone grafting. A potential alternative treatment is the use of tissue engineered scaffolds. Hydrogels are well characterized nanoporous scaffolds and cryogels are mechanically durable, macroporous, sponge-like scaffolds. However, there has been limited research on these scaffolds for cleft craniofacial defects. 3D-printed molds can be combined with cryogel/hydrogel fabrication to create patient-specific tissue engineered scaffolds. By combining 3D-printing technology and scaffold fabrication, we were able to create scaffolds with the geometry of three cleft craniofacial defects. The scaffolds were then characterized to assess the effect of the mold on their physical properties. While the scaffolds were able to completely fill the mold, creating the desired geometry, the overall volumes were smaller than expected. The cryogels possessed porosities ranging from 79.7% to 87.2% and high interconnectivity. Additionally, the cryogels swelled from 400% to almost 1500% of their original dry weight while the hydrogel swelling did not reach 500%, demonstrating the ability to fill a defect site. Overall, despite the complex geometry, the cryogel scaffolds displayed ideal properties for bone reconstruction.

2021 ◽  
Vol 12 ◽  
pp. 204173142110037
Author(s):  
Aala’a Emara ◽  
Rishma Shah

The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering advancements and the application in the craniofacial region is quickly gaining momentum although most research is still at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this article. The future perspectives and how current technological advancements and different material applications are enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore, 3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require further research in order to catch up with engineering of other parts of the human body.


2016 ◽  
Vol 90 ◽  
pp. 704-712 ◽  
Author(s):  
Kan Wang ◽  
Yuanshuo Zhao ◽  
Yung-Hang Chang ◽  
Zhen Qian ◽  
Chuck Zhang ◽  
...  

2017 ◽  
Vol 32 (5) ◽  
pp. 598-611 ◽  
Author(s):  
Katherine R Hixon ◽  
Alexa M Melvin ◽  
Alexander Y Lin ◽  
Andrew F Hall ◽  
Scott A Sell

Bone defects are extremely common in children with cleft-craniofacial conditions, especially those with alveolar cleft defects and cranial defects. This study used patient-specific 3D-printed molds derived from computed tomography and cryogel scaffold fabrication as a proof of concept for the creation of site-specific implants for bone reconstruction. Cryogel scaffolds are unique tissue-engineered constructs formed at sub-zero temperatures. When thawed, the resulting structure is macroporous, sponge-like, and mechanically durable. Due to these unique properties, cryogels have excellent potential for the treatment of patient-specific bone defects; however, there is little literature on their use in cleft-craniofacial defects. While 3D-printing technology currently lacks the spatial resolution to print the microstructure necessary for bone regeneration, it can be used to create site-specific molds. Thus, it is ideal to integrate these techniques for the fabrication of scaffolds with patient-specific geometry. Overall, all cryogels possessed appropriate geometry to allow for cell infiltration after 28 days. Additionally, suitable mechanical durability was demonstrated where, despite mold geometry, all cryogels could be compressed without exhibiting crack propagation. Such a patient-specific scaffold would be ideal in pediatric cleft-craniofacial defects, as these are complex 3D defects and children have less donor bone availability.


2018 ◽  
Vol 9 ◽  
pp. 204173141876470 ◽  
Author(s):  
Cameron Best ◽  
Robert Strouse ◽  
Kan Hor ◽  
Victoria Pepper ◽  
Amy Tipton ◽  
...  

Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1910
Author(s):  
Hun-Jin Jeong ◽  
Se-Won Lee ◽  
Myoung Wha Hong ◽  
Young Yul Kim ◽  
Kyoung Duck Seo ◽  
...  

The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.


2021 ◽  
pp. 155633162199633
Author(s):  
Mehran Ashouri-Sanjani ◽  
Shima Mohammadi-Moghadam ◽  
Parisa Azimi ◽  
Navid Arjmand

Background: Pedicle screw (PS) placement has been widely used in fusion surgeries on the thoracic spine. Achieving cost-effective yet accurate placements through nonradiation techniques remains challenging. Questions/Purposes: Novel noncovering lock-mechanism bilateral vertebra-specific drill guides for PS placement were designed/fabricated, and their accuracy for both nondeformed and deformed thoracic spines was tested. Methods: One nondeformed and 1 severe scoliosis human thoracic spine underwent computed tomographic (CT) scanning, and 2 identical proportions of each were 3-dimensional (3D) printed. Pedicle-specific optimal (no perforation) drilling trajectories were determined on the CT images based on the entry point/orientation/diameter/length of each PS. Vertebra-specific templates were designed and 3D printed, assuring minimal yet firm contacts with the vertebrae through a noncovering lock mechanism. One model of each patient was drilled using the freehand and one using the template guides (96 pedicle drillings). Postoperative CT scans from the models with the inserted PSs were obtained and superimposed on the preoperative planned models to evaluate deviations of the PSs. Results: All templates fitted their corresponding vertebra during the simulated operations. As compared with the freehand approach, PS placement deviations from their preplanned positions were significantly reduced: for the nonscoliosis model, from 2.4 to 0.9 mm for the entry point, 5.0° to 3.3° for the transverse plane angle, 7.1° to 2.2° for the sagittal plane angle, and 8.5° to 4.1° for the 3D angle, improving the success rate from 71.7% to 93.5%. Conclusions: These guides are valuable, as the accurate PS trajectory could be customized preoperatively to match the patients’ unique anatomy. In vivo studies will be required to validate this approach.


2021 ◽  
Author(s):  
Mariya S. Pravdivtseva ◽  
Eva Peschke ◽  
Thomas Lindner ◽  
Fritz Wodarg ◽  
Johannes Hensler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document