Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance

2003 ◽  
Vol 114 (5) ◽  
pp. 2672 ◽  
Author(s):  
Mark V. Trevorrow
2016 ◽  
Vol 16 (11) ◽  
pp. 4092-4099 ◽  
Author(s):  
Amit Kumar Mandal ◽  
Sudip Misra ◽  
Tamoghna Ojha ◽  
Mihir Kumar Dash ◽  
Mohammad S. Obaidat

1993 ◽  
Vol 94 (3) ◽  
pp. 1784-1784
Author(s):  
Jeffrey A. Schindall ◽  
Ronald A. Roy ◽  
Lawrence A. Crum ◽  
William M. Carey

Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


2014 ◽  
Vol 14 (5) ◽  
pp. 7025-7066 ◽  
Author(s):  
W. C. Keene ◽  
J. L. Moody ◽  
J. N. Galloway ◽  
J. M. Prospero ◽  
O. R. Cooper ◽  
...  

Abstract. Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US) and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART retroplumes into four discrete transport regimes: westerly flow from the eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted northeastern US (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42- associated with aerosols and annual VWA concentrations in precipitation decreased significantly (by 22 and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3- and of aerosol NH4+ were insignificant. Nss SO42- in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42- under both flow regimes were insignificant. Trends for precipitation were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42- concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to to nss SO42- in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42- under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42- associated with precipitation was marginally insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3- associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (39%) in NOx emissions in the US over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42- to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas-aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+) towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42- in near-surface air under NEUS/SEUS flow over the period of record suggests a lower limit for net warming in the range of 0.1–0.3 W m-2 resulting from the decreased shortwave scattering and absorption by nss SO42- and associated aerosol constituents.


2008 ◽  
Vol 25 (9) ◽  
pp. 1710-1716 ◽  
Author(s):  
Jiayi Pan ◽  
David A. Jay

Abstract The utility of the acoustic Doppler current profiler (ADCP) for sampling small time and space scales of coastal environments can be enhanced by mounting a high-frequency (1200 kHz) ADCP on an oscillating towed body. This approach requires both an external reference to convert the measured shears to velocities in the earth coordinates and a method to determine the towed body velocities. During the River Influence on the Shelf Ecosystems (RISE) project cruise, a high-frequency (1200 kHz) and narrowbeam ADCP with mode 12 sampling was mounted on a TRIAXUS oscillating towfish, which steers a 3D path behind the ship. This deployment approach extended the vertical range of the ADCP and allowed it to sample near-surface waters outside the ship’s wake. The measurements from a ship-mounted 1200-kHz narrowbeam ADCP are used as references for TRIAXUS ADCP data, and a method of overlapping bins is employed to recover the entire vertical range of the TRIAXUS ADCP. The TRIAXUS vehicle horizontal velocities are obtained by removing the derived ocean current velocity from the TRIAXUS ADCP measurements. The results show that the method is practical.


2020 ◽  
Vol 110 (2) ◽  
pp. 441-451
Author(s):  
Zafeiria Roumelioti ◽  
Fabrice Hollender ◽  
Philippe Guéguen

ABSTRACT We apply interferometry by deconvolution to compute the shear-wave velocity in shallow sediments (0–83.4 m) based on earthquake records from a vertical accelerometric array (ARGOstoli Network [ARGONET]) on Cephalonia Island, Greece. Analysis of the time variation of measured values reveals a cyclical pattern, which correlates negatively to rainfall and a soil moisture proxy. The pattern includes a sharp reduction in velocity at the beginning of rainy seasons and a gradual rise toward dry periods, the overall variation being around 20%–25% within the shallowest depth interval examined (0–5.6 m) and estimated to reach 40% within the top 2 m. The variation itself and its amplitude are verified by surface-wave dispersion analysis, using ambient vibration data. Synthetic standard spectral ratios suggest that this seasonal effect leaves an imprint on soil response, causing differences in the level of high-frequency ground motion between dry and rainy seasons, and this is verified by earthquake records. Furthermore, the near-surface velocity decrease due to soil saturation can be of the same order of magnitude as the nonlinear coseismic variation, masking the physical process of the nonlinear response of the site due to weak-to-strong-motion shaking. Thus, seasonal variations of seismic-wave velocities in shallow sediments may be important for a number of site-effect related topics, such as high-frequency ground-motion variability, soil anisotropy, kappa measurements, nonlinear site response, and so on.


1997 ◽  
Vol 101 (5) ◽  
pp. 3196-3196
Author(s):  
Jun He ◽  
F. D. Tappert

2002 ◽  
Vol 112 (5) ◽  
pp. 2424-2424
Author(s):  
R. Lee Culver ◽  
David Bradley ◽  
Jon Reeves

Sign in / Sign up

Export Citation Format

Share Document