Comparison of a finite element model with a multiple-scales solution for sound propagation in varying ducts with swirling flows

2004 ◽  
Vol 115 (6) ◽  
pp. 2716-2730 ◽  
Author(s):  
Fabien Treyssède ◽  
Mabrouk Ben Tahar
2021 ◽  
Vol 9 (9) ◽  
pp. 956
Author(s):  
Yi-Qing Zhou ◽  
Wen-Yu Luo

The finite element method is a popular numerical method in engineering applications. However, there is not enough research about the finite element method in underwater sound propagation. The finite element method can achieve high accuracy and great universality. We aim to develop a three-dimensional finite element model focusing on underwater sound propagation. As the foundation of this research, we put forward a finite element model in the Cartesian coordinate system for a sound field in a two-dimensional environment. We firstly introduce the details of the implementation of the finite element model, as well as different methods to deal with boundary conditions and a comparison of these methods. Then, we use four-node quadrilateral elements to discretize the physical domain, and apply the perfectly matched layer approach to deal with the infinite region. After that, we apply the model to underwater sound propagation problems including the wedge-shaped waveguide benchmark problem and the problem where the bathymetry consists of a sloping region and a flat region. The results by the presented finite element model are in excellent agreement with analytical and benchmark numerical solutions, implying that the presented finite element model is able to solve complex two-dimensional underwater sound propagation problems accurately. In the end, we compare the finite element model with the popular normal mode model KRAKEN by calculating sound fields in Pekeris waveguides, and find that the finite element model has better universality than KRAKEN.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document