scholarly journals Are high‐frequency fibers necessary for speech perception in noise

1991 ◽  
Vol 89 (4B) ◽  
pp. 1866-1866
Author(s):  
E. A. Strickland ◽  
N. F. Viemeister ◽  
D. J. van Tasell
2020 ◽  
Vol 63 (5) ◽  
pp. 1595-1607
Author(s):  
Julia Campbell ◽  
Mashhood Nielsen ◽  
Alison LaBrec ◽  
Connor Bean

Purpose Speech perception in noise (SPiN) varies widely in individuals with normal hearing, which may be attributed to factors that are not reflected in the audiogram, such as inhibition. However, inhibition is involved at both sensory and cognitive stages of auditory perception, and while inhibition at the cognitive level has been shown to be a significant factor in SPiN processes, it is unknown whether sensory inhibition may also contribute to SPiN variability. Therefore, the goal of this study was to evaluate sensory inhibition in adults with normal hearing and mild SPiN impairment. Method Cortical auditory evoked potentials (CAEPs) were recorded in 49 adults via high-density electroencephalography using an auditory gating paradigm. Participants were categorized according to a median signal-to-noise ratio (SNR) loss of 1.5 dB: typical SNR loss ≤ 1.5 dB ( n = 32), mild SNR loss > 1.5 dB ( n = 17). CAEP gating responses were compared and correlated with SNR loss and extended high-frequency thresholds. Current density reconstructions were performed to qualitatively observe underlying cortical inhibitory networks in each group. Results In comparison to adults with typical SPiN ability, adults with mild SPiN impairment showed an absence of the gating response. A CAEP gating component (P2) reflected decreased sensory inhibition and correlated with increased SNR loss. Extended high-frequency thresholds were also found to correlate with SNR loss, but not gating function. An atypical cortical inhibitory network was observed in the mild SNR loss group, with reduced frontal and absent prefrontal activation. Conclusion Sensory inhibition appears to be atypical and related to SPiN deficits in adults with mild impairment. In addition, cortical inhibitory networks appear to be incomplete, with a possible compensatory parietal network. Further research is needed to delineate between types or levels of central inhibitory mechanisms and their contribution to SPiN processes.


2019 ◽  
Vol 116 (47) ◽  
pp. 23753-23759 ◽  
Author(s):  
Lina Motlagh Zadeh ◽  
Noah H. Silbert ◽  
Katherine Sternasty ◽  
De Wet Swanepoel ◽  
Lisa L. Hunter ◽  
...  

Young healthy adults can hear tones up to at least 20 kHz. However, clinical audiometry, by which hearing loss is diagnosed, is limited at high frequencies to 8 kHz. Evidence suggests there is salient information at extended high frequencies (EHFs; 8 to 20 kHz) that may influence speech intelligibility, but whether that information is used in challenging listening conditions remains unknown. Difficulty understanding speech in noisy environments is the most common concern people have about their hearing and usually the first sign of age-related hearing loss. Digits-in-noise (DIN), a widely used test of speech-in-noise perception, can be sensitized for detection of high-frequency hearing loss by low-pass filtering the broadband masking noise. Here, we used standard and EHF audiometry, self-report, and successively higher cutoff frequency filters (2 to 8 kHz) in a DIN test to investigate contributions of higher-frequency hearing to speech-in-noise perception. Three surprising results were found. First, 74 of 116 “normally hearing,” mostly younger adults had some hearing loss at frequencies above 8 kHz. Early EHF hearing loss may thus be an easily measured, preventive warning to protect hearing. Second, EHF hearing loss correlated with self-reported difficulty hearing in noise. Finally, even with the broadest filtered noise (≤8 kHz), DIN hearing thresholds were significantly better (P < 0.0001) than those using broadband noise. Sound energy above 8 kHz thus contributes to speech perception in noise. People with “normal hearing” frequently report difficulty hearing in challenging environments. Our results suggest that one contribution to this difficulty is EHF hearing loss.


2011 ◽  
Vol 7 (1) ◽  
pp. 8-14
Author(s):  
Robert Moore ◽  
Susan Gordon-Hickey

The purpose of this article is to propose 4 dimensions for consideration in hearing aid fittings and 4 tests to evaluate those dimensions. The 4 dimensions and tests are (a) working memory, evaluated by the Revised Speech Perception in Noise test (Bilger, Nuetzel, & Rabinowitz, 1984); (b) performance in noise, evaluated by the Quick Speech in Noise test (QSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004); (c) acceptance of noise, evaluated by the Acceptable Noise Level test (ANL; Nabelek, Tucker, & Letowski, 1991); and (d) performance versus perception, evaluated by the Perceptual–Performance test (PPT; Saunders & Cienkowski, 2002). The authors discuss the 4 dimensions and tests in the context of improving the quality of hearing aid fittings.


2011 ◽  
Vol 7 (3) ◽  
pp. 214-226 ◽  
Author(s):  
Anuradha R. Bantwal ◽  
James W. Hall III

2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Younes Lotfi ◽  
Mahdieh Hasanalifard ◽  
Abdollah Moossavi ◽  
Enayatollah Bakhshi ◽  
Mohammad Ajalloueyan

Abstract Background The objective of this study was to evaluate the effect of “Spatially separated speech in noise” auditory training on the ability of speech perception in noise among bimodal fitting users. The assumption was that the rehabilitation can enhance spatial hearing and hence speech in noise perception. This study was an interventional study, with a pre/post-design. Speech recognition ability was assessed with the specific tests. After performing the rehabilitation stages in the intervention group, the speech tests were again implemented, and by comparing the pre- and post-intervention data, the effect of auditory training on the speech abilities was assessed. Twenty-four children of 8–12 years who had undergone cochlear implantation and continuously used bimodal fitting were investigated in two groups of control and intervention. Results The results showed a significant difference between the groups in different speech tests after the intervention, which indicated that the intervention group have improved more than the control group. Conclusion It can be concluded that “Spatially separated speech in noise” auditory training can improve the speech perception in noise in bimodal fitting users. In general, this rehabilitation method is useful for enhancing the speech in noise perception ability.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Mai M. El Ghazaly ◽  
Mona I. Mourad ◽  
Nesrine H. Hamouda ◽  
Mohamed A. Talaat

Abstract Background Speech perception in cochlear implants (CI) is affected by frequency resolution, exposure time, and working memory. Frequency discrimination is especially difficult in CI. Working memory is important for speech and language development and is expected to contribute to the vast variability in CI speech reception and expression outcome. The aim of this study is to evaluate CI patients’ consonants discrimination that varies in voicing, manner, and place of articulation imparting differences in pitch, time, and intensity, and also to evaluate working memory status and its possible effect on consonant discrimination. Results Fifty-five CI patients were included in this study. Their aided thresholds were less than 40 dBHL. Consonant speech discrimination was assessed using Arabic consonant discrimination words. Working memory was assessed using Test of Memory and Learning-2 (TOMAL-2). Subjects were divided according to the onset of hearing loss into prelingual children and postlingual adults and teenagers. Consonant classes studied were fricatives, stops, nasals, and laterals. Performance on the high frequency CVC words was 64.23% ± 17.41 for prelinguals and 61.70% ± 14.47 for postlinguals. These scores were significantly lower than scores on phonetically balanced word list (PBWL) of 79.94% ± 12.69 for prelinguals and 80.80% ± 11.36 for postlinguals. The lowest scores were for the fricatives. Working memory scores were strongly and positively correlated with speech discrimination scores. Conclusions Consonant discrimination using high frequency weighted words can provide a realistic tool for assessment of CI speech perception. Working memory skills showed a strong positive relationship with speech discrimination abilities in CI.


Sign in / Sign up

Export Citation Format

Share Document