Method and system for collaborative speech recognition for small-area network

2005 ◽  
Vol 118 (4) ◽  
pp. 2113
Author(s):  
James Gordon McLean
Author(s):  
M. Petroni ◽  
C. Collet ◽  
N. Fumai ◽  
K. Roger ◽  
C. Yien ◽  
...  

Abstract An automatic speech recognition system is being developed for a patient data management system (PDMS) for the pediatric intensive care unit (ICU) at the Montreal Children’s Hospital. Here, fourteen bedside monitors are linked by a local area network to a personal computer for real-time acquisition of vital sign data and the graphical display of trends. The PDMS also allows for the manual input of data, such as fluid balance data, by means of a keyboard and a pointing device. This paper presents a description of the multimodal human-computer interface of the bedside data entry system, focusing on the speech recognition and generation sub-systems and their integration in the OS/2 Presentation Manager environment.


2020 ◽  
Vol 10 (19) ◽  
pp. 6995
Author(s):  
Jing Qi ◽  
Xilun Ding ◽  
Weiwei Li ◽  
Zhonghua Han ◽  
Kun Xu

Hand postures and speech are convenient means of communication for humans and can be used in human–robot interaction. Based on structural and functional characteristics of our integrated leg-arm hexapod robot, to perform reconnaissance and rescue tasks in public security application, a method of linkage of movement and manipulation of robots is proposed based on the visual and auditory channels, and a system based on hand postures and speech recognition is described. The developed system contains: a speech module, hand posture module, fusion module, mechanical structure module, control module, path planning module and a 3D SLAM (Simultaneous Localization and Mapping) module. In this system, three modes, i.e., the hand posture mode, speech mode, and a combination of the hand posture and speech modes, are used in different situations. The hand posture mode is used for reconnaissance tasks, and the speech mode is used to query the path and control the movement and manipulation of the robot. The combination of the two modes can be used to avoid ambiguity during interaction. A semantic understanding-based task slot structure is developed by using the visual and auditory channels. In addition, a method of task planning based on answer-set programming is developed, and a system of network-based data interaction is designed to control movements of the robot using Chinese instructions remotely based on a wide area network. Experiments were carried out to verify the performance of the proposed system.


2019 ◽  
Vol 8 (3) ◽  
pp. 916-922
Author(s):  
S. M. Kayser Azam ◽  
Muhammad I. Ibrahimy ◽  
S. M. A. Motakabber ◽  
A. K. M. Zakir Hossain ◽  
Md. Shazzadul Islam

In this article, a miniaturized hairpin resonator has been presented to introduce the high selectivity of Wireless Local Area Network (WLAN) bandwidth. In the construction of the hairpin resonator, short-circuited comb-lines are electrically coupled with the two longer edges of a rectangular-shaped loop. The hairpin resonator has been designed and fabricated with the Taconic TLX-8 substrate with a center-frequency at 2.45 GHz. The resonator exhibits a second order quasi-Chebyshev bandpass response. A low insertion loss has been found as -0.36 dB with a minimum return loss as -36.71 dB. The filtering dimension of this hairpin resonator occupies a small area of 166.82 mm2. This hairpin resonator is highly selective for the bandpass applications of the entire WLAN bandwidth.


1984 ◽  
Author(s):  
Ronald L. Mitchell
Keyword(s):  

Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


Sign in / Sign up

Export Citation Format

Share Document