The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms

2009 ◽  
Vol 125 (2) ◽  
pp. 1197-1201 ◽  
Author(s):  
Keith A. Wear
2017 ◽  
Vol 233 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Russell T Turner ◽  
Kenneth A Philbrick ◽  
Amida F Kuah ◽  
Adam J Branscum ◽  
Urszula T Iwaniec

Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
David P. Fyhrie ◽  
Roger Zauel

There are many methods used to estimate the undamaged effective (apparent) moduli of cancellous bone as a function of bone volume fraction (BV/TV), mean intercept length (MIL), and other image based average microstructural measures. The MIL and BV/TV are both only functions of the cancellous microstructure and, therefore, cannot directly account for damage induced changes in the intrinsic trabecular hard tissue mechanical properties. Using a nonlinear finite element (FE) approximation for the degradation of effective modulus as a function of applied effective compressive strain, we demonstrate that a measurement of the directional tortuosity of undamaged trabecular hard tissue strongly predicts directional effective modulus (r2 > 0.90) and directional effective modulus degradation (r2 > 0.65). This novel measure of cancellous bone directional tortuosity has the potential for development into an anisotropic approach for calculating effective mechanical properties as a function of trabecular level material damage applicable to understanding how tissue microstructure and intrinsic hard tissue moduli interact to determine cancellous bone quality.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Matthew B. L. Bennison ◽  
A. Keith Pilkey ◽  
W. Brent Lievers

Abstract Cancellous bone is an anisotropic structure with architectural and mechanical properties that vary due to both skeletal site and disease state. This anisotropy means that, in order to accurately and consistently measure the mechanical properties of cancellous bone, experiments should be performed along the primary mechanical axis (PMA), that is, the orientation in which the mechanical properties are at their maximum value. Unfortunately, some degree of misalignment will always be present, and the magnitude of the resulting error is expected to be architecture dependent. The goal of this work is to quantify the dependence of the misalignment error, expressed in terms of change in apparent elastic modulus (ΔE), on both the bone volume fraction (BV/TV) and the degree of anisotropy (DA). Finite element method (FEM) models of bovine cancellous bone from five different skeletal sites were created at 5 deg and 20 deg from the PMA determined for each region. An additional set of models was created using image dilation/erosion steps in order to control for BV/TV and better isolate the effect of DA. Misalignment error was found to increase with increasing DA and decreasing BV/TV. At 5 deg misaligned from the PMA, error is relatively low (<5%) in all cases but increases to 8–24% error at 20 deg. These results suggest that great care is needed to avoid introducing misalignment error into experimental studies, particularly when studying regions with high anisotropy and/or low bone volume fraction, such as vertebral or osteoporotic bone.


2010 ◽  
Vol 127 (3) ◽  
pp. 2006-2006
Author(s):  
Christian C. Anderson ◽  
Michal Pakula ◽  
Pascal Laugier ◽  
G. Larry Bretthorst ◽  
Mark R. Holland ◽  
...  

Bone ◽  
2006 ◽  
Vol 39 (6) ◽  
pp. 1196-1202 ◽  
Author(s):  
Ara Nazarian ◽  
Martin Stauber ◽  
David Zurakowski ◽  
Brian D. Snyder ◽  
Ralph Müller

2015 ◽  
Vol 770 ◽  
pp. 210-246 ◽  
Author(s):  
M. Mehrabadi ◽  
S. Tenneti ◽  
R. Garg ◽  
S. Subramaniam

Gas-phase velocity fluctuations due to mean slip velocity between the gas and solid phases are quantified using particle-resolved direct numerical simulation. These fluctuations are termed pseudo-turbulent because they arise from the interaction of particles with the mean slip even in ‘laminar’ gas–solid flows. The contribution of turbulent and pseudo-turbulent fluctuations to the level of gas-phase velocity fluctuations is quantified in initially ‘laminar’ and turbulent flow past fixed random particle assemblies of monodisperse spheres. The pseudo-turbulent kinetic energy $k^{(f)}$ in steady flow is then characterized as a function of solid volume fraction ${\it\phi}$ and the Reynolds number based on the mean slip velocity $\mathit{Re}_{m}$. Anisotropy in the Reynolds stress is quantified by decomposing it into isotropic and deviatoric parts, and its dependence on ${\it\phi}$ and $Re_{m}$ is explained. An algebraic stress model is proposed that captures the dependence of the Reynolds stress on ${\it\phi}$ and $Re_{m}$. Gas-phase velocity fluctuations in freely evolving suspensions undergoing elastic and inelastic particle collisions are also quantified. The flow corresponds to homogeneous gas–solid systems, with high solid-to-gas density ratio and particle diameter greater than dissipative length scales. It is found that for the parameter values considered here, the level of pseudo-turbulence differs by only 15 % from the values for equivalent fixed beds. The principle of conservation of interphase turbulent kinetic energy transfer is validated by quantifying the interphase transfer terms in the evolution equations of kinetic energy for the gas-phase and solid-phase fluctuating velocity. It is found that the collisional dissipation is negligible compared with the viscous dissipation for the cases considered in this study where the freely evolving suspensions attain a steady state starting from an initial condition where the particles are at rest.


Sign in / Sign up

Export Citation Format

Share Document