In‐vivo time reversal blastography: A passive correlation tomography of complex shear wave field within in soft tissues.

2010 ◽  
Vol 127 (3) ◽  
pp. 1730-1730
Author(s):  
Stefan Catheline ◽  
Thomas Gallot ◽  
Philippe Roux ◽  
Javier Brum ◽  
Carlos Negreira
2010 ◽  
Vol 127 (3) ◽  
pp. 1730-1730 ◽  
Author(s):  
Thomas Gallot ◽  
Stefan Catheline ◽  
Philippe Roux ◽  
Javier Brum ◽  
Carlos Negreira

2004 ◽  
Vol 115 (5) ◽  
pp. 2595-2595 ◽  
Author(s):  
Delphine Palacio ◽  
Jeremy Bercoff ◽  
Gabriel Montaldo ◽  
Mickael Tanter ◽  
Mathias Fink ◽  
...  

2009 ◽  
Vol 28 (3) ◽  
pp. 313-322 ◽  
Author(s):  
T. Deffieux ◽  
G. Montaldo ◽  
M. Tanter ◽  
M. Fink
Keyword(s):  

2018 ◽  
Vol 63 (18) ◽  
pp. 18NT02
Author(s):  
C Zemzemi ◽  
J Aichele ◽  
S Catheline

2021 ◽  
Vol 8 ◽  
Author(s):  
Juvenal Ormachea ◽  
Fernando Zvietcovich

There are a variety of approaches used to create elastography images. Techniques based on shear wave propagation have received significant attention. However, there remain some limitations and problems due to shear wave reflections, limited penetration in highly viscous media, requirements for prior knowledge of wave propagation direction, and complicated propagation in layers where surface acoustic waves and guided waves are dominant. To overcome these issues, reverberant shear wave elastography (RSWE) was proposed as an alternative method which applies the concept of a narrow-band diffuse field of shear waves within the tissue. Since 2017, the RSWE approach has been implemented in ultrasound (US) and optical coherence tomography (OCT). Specifically, this approach has been implemented in these imaging modalities because they are similar in image formation principles and both share several approaches to estimate the biomechanical properties in tissues. Moreover, they cover different spatial-scale and penetration depth characteristics. RSWE has shown promising results in the elastic and viscoelastic characterization of multiple tissues including liver, cornea, and breast. This review summarizes the 4-year progress of the RSWE method in US and OCT. Theoretical derivations, numerical simulations, and applications in ex vivo and in vivo tissues are shown. Finally, we emphasize the current challenges of RSWE in terms of excitation methods and estimation of biomechanical parameters for tissue-specific cases and discuss future pathways for the in vivo and in situ clinical implementations.


Author(s):  
Anna E. Knight ◽  
Courtney A. Trutna ◽  
Ned C. Rouze ◽  
Lisa D. Hobson-Webb ◽  
Mark L. Palmeri ◽  
...  

Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


1972 ◽  
Vol 11 (01) ◽  
pp. 70-78
Author(s):  
Esther Miller ◽  
Leopoldo Anghileri

SummaryThe distribution of 32P-polyphosphates (lineal and cross-linked) and 32Porthophosphate in normal and tumor bearing animals has been studied. Differences between the cross-linked and the lineal form are related to a different degree of susceptibility to the hydrolysis by the phosphatases. In contrast to orthophosphate, the polyphosphates showed a lower accumulation in soft tissues which gives an advantageous reduction of the total body radiation dose.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


Sign in / Sign up

Export Citation Format

Share Document