scholarly journals Further evidence that fundamental-frequency difference limens measure pitch discrimination

2012 ◽  
Vol 131 (5) ◽  
pp. 3989-4001 ◽  
Author(s):  
Christophe Micheyl ◽  
Claire M. Ryan ◽  
Andrew J. Oxenham
2010 ◽  
Vol 128 (4) ◽  
pp. 1930-1942 ◽  
Author(s):  
Christophe Micheyl ◽  
Kristin Divis ◽  
David M. Wrobleski ◽  
Andrew J. Oxenham

2019 ◽  
Vol 9 (15) ◽  
pp. 3042 ◽  
Author(s):  
Elizabeth S. Heller Murray ◽  
Anne F. Hseu ◽  
Roger C. Nuss ◽  
Geralyn Harvey Woodnorth ◽  
Cara E. Stepp

Vocal pitch discrimination abilities were compared in sixteen children with vocal fold nodules (CwVN) and sixteen matched controls with typical voices (CwTV). Vocal pitch discrimination was also evaluated in thirty-five vocally healthy children and twenty adults to examine potential changes as a function of maturation. CwTV were categorized as either younger (N = 15, 5.6–7.7 years) or older (N = 20, 8.2–11.7 years). Participants completed two-alternative, forced choice listening tasks in which they judged whether pairs of sustained /ɑ/ tokens were different in pitch. Each pair consisted of a base token with a fundamental frequency (fo) of 216.2 Hz and a test token with a fo that was adaptively modified, according to the participant’s prior judgments. There were no significant differences in pitch discrimination abilities between CwVN and CwTV. Pitch discrimination abilities were significantly poorer in younger and older CwTV as compared to adults. Additionally, younger CwTV had significantly poorer discrimination abilities than older CwTV. Findings from this study suggest that CwVN do not have differences in pitch discrimination abilities, yet, therapies designed for CwVN should consider this developmental trend in perceptual abilities.


2013 ◽  
Vol 427-429 ◽  
pp. 1928-1933
Author(s):  
Jian Wang ◽  
Tian Guan ◽  
Da Tian Ye ◽  
Zhi Peng Chen

This paper studied the effect of several parameters on pitch perception of unresolved harmonics by measuring fundamental frequency difference limens. The parameters included roving fundamental frequency or not, type of background noise, and cutoff frequency of lowpass pink noise. Results found that performance was significantly worse when the fundamental frequency was roved than the constant case, lowpass pink noise had similar ability to mask combination tones as threshold equalizing noise, and that combination tones could be masked if the cutoff frequency of the lowpass pink noise was not lower than the frequency of the tenth harmonic. This paper proposed a set of appropriate parameters for experiments of pitch perception, which suggested that roving fundamental frequency, using threshold equalizing noise with the level of about 8-13 dB below the level per component of the stimuli, or using lowpass pink noise with the cutoff frequency not lower than the frequency of the tenth harmonic, can achieve effective performance for pitch perception.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249654
Author(s):  
Sara M. K. Madsen ◽  
Torsten Dau ◽  
Andrew J. Oxenham

Differences in fundamental frequency (F0) or pitch between competing voices facilitate our ability to segregate a target voice from interferers, thereby enhancing speech intelligibility. Although lower-numbered harmonics elicit a stronger and more accurate pitch sensation than higher-numbered harmonics, it is unclear whether the stronger pitch leads to an increased benefit of pitch differences when segregating competing talkers. To answer this question, sentence recognition was tested in young normal-hearing listeners in the presence of a single competing talker. The stimuli were presented in a broadband condition or were highpass or lowpass filtered to manipulate the pitch accuracy of the voicing, while maintaining roughly equal speech intelligibility in the highpass and lowpass regions. Performance was measured with average F0 differences (ΔF0) between the target and single-talker masker of 0, 2, and 4 semitones. Pitch discrimination abilities were also measured to confirm that the lowpass-filtered stimuli elicited greater pitch accuracy than the highpass-filtered stimuli. No interaction was found between filter type and ΔF0 in the sentence recognition task, suggesting little or no effect of harmonic rank or pitch accuracy on the ability to use F0 to segregate natural voices, even when the average ΔF0 is relatively small. The results suggest that listeners are able to obtain some benefit of pitch differences between competing voices, even when pitch salience and accuracy is low. The accuracy with which we are able to discriminate the pitch of a harmonic complex tone depends on the F0 and the harmonic numbers present. For F0s in the average range of speech (100–200 Hz), pitch discrimination is best (implying accurate F0 coding) when harmonics below about the 10th are present [6–10]. When these lower-numbered harmonics are present, pitch discrimination is also independent of the phase relationships between the harmonics, suggesting that these harmonics are spectrally resolved to some extent. In contrast, when only harmonics above the 10th are present in this range of F0s, pitch discrimination is poorer and is affected by the phase relationships between harmonics, suggesting that interactions occur between these spectrally unresolved harmonics [6–10]. Psychoacoustic studies of sound segregation have often been carried out with interleaved sequences of tones. Some of these studies have investigated segregation based on differences in pitch accuracy and have varied the accuracy by systematically varying whether resolved or only unresolved harmonics are present. Previous studies have found that stream segregation can occur with alternating sequences of tones, even if the tones consist only of unresolved harmonics [11–14]. However, the question of whether streaming is greater with resolved than unresolved harmonics has received mixed answers. In cases where the listeners’ task was to segregate the streams, some studies have shown little difference in streaming between conditions containing resolved or only unresolved harmonics [11, 15], whereas another study using a similar approach found significantly greater stream segregation when resolved harmonics were present than when only unresolved harmonics were present [12]. However, in situations where the task was either neutral or encouraged listeners to integrate the sequences into a single stream, the results have been consistent across studies in showing greater segregation for complex tones containing resolved harmonics than for tones containing only unresolved harmonics [13, 14]. These findings support the idea that pitch accuracy can affect our ability to segregate sounds. Less is known about the role of low-numbered harmonics in the context of segregating competing speech. Bird and Darwin [2] showed that lower harmonics dominate performance in a speech-segregation task based on F0 differences, but they did not test any conditions containing only high-numbered harmonics. Oxenham and Simonson [16] explored the effect of harmonic rank on speech intelligibility by comparing conditions where the target and single-talker masker had been lowpass (LP) or highpass (HP) filtered to either retain (LP-filtered) or remove (HP-filtered) the spectrally resolved components from the target and masker [16]. The LP and HP cutoff frequencies were selected to produce roughly equal performance in noise for both conditions. Surprisingly, performance in the LP and HP conditions improved by similar amounts when the noise masker was replaced by a single-talker masker with a different average F0, suggesting no clear benefit of having resolved harmonic components in the speech. However, that study only used relatively large values of average ΔF0 that according to recent F0 estimates were approximately 4 and 8 semitones (ST). Moreover, this study did not parametrically vary the ΔF0 between the target and masker. It may be that pitch accuracy is only relevant for more challenging conditions, i.e. for conditions with smaller average values of ΔF0. Thus, it remains unclear whether the effect of ΔF0 on performance is affected by the presence or absence of low-numbered, spectrally resolved harmonics. The aim of the present study was to determine whether there is an effect of spectral region, and hence pitch coding accuracy, on the ability of listeners to use average F0 differences between a target and an interfering talker to understand natural speech.


1979 ◽  
Vol 10 (4) ◽  
pp. 246-248 ◽  
Author(s):  
Peter B. Mueller ◽  
Marla Adams ◽  
Jean Baehr-Rouse ◽  
Debbie Boos

Mean fundamental frequencies of male and female subjects obtained with FLORIDA I and a tape striation counting procedure were compared. The fundamental frequencies obtained with these two methods were similar and it appears that the tape striation counting procedure is a viable, simple, and inexpensive alternative to more costly and complicated procedures and instrumentation.


1995 ◽  
Vol 4 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Katherine Verdolini ◽  
Ingo R. Titze

In this paper, we discuss the application of mathematical formulas to guide the development of clinical interventions in voice disorders. Discussion of case examples includes fundamental frequency and intensity deviations, pitch and loudness abnormalities, laryngeal hyperand hypoadduction, and phonatory effort. The paper illustrates the interactive nature of theoretical and applied work in vocology


2020 ◽  
Vol 63 (4) ◽  
pp. 931-947
Author(s):  
Teresa L. D. Hardy ◽  
Carol A. Boliek ◽  
Daniel Aalto ◽  
Justin Lewicke ◽  
Kristopher Wells ◽  
...  

Purpose The purpose of this study was twofold: (a) to identify a set of communication-based predictors (including both acoustic and gestural variables) of masculinity–femininity ratings and (b) to explore differences in ratings between audio and audiovisual presentation modes for transgender and cisgender communicators. Method The voices and gestures of a group of cisgender men and women ( n = 10 of each) and transgender women ( n = 20) communicators were recorded while they recounted the story of a cartoon using acoustic and motion capture recording systems. A total of 17 acoustic and gestural variables were measured from these recordings. A group of observers ( n = 20) rated each communicator's masculinity–femininity based on 30- to 45-s samples of the cartoon description presented in three modes: audio, visual, and audio visual. Visual and audiovisual stimuli contained point light displays standardized for size. Ratings were made using a direct magnitude estimation scale without modulus. Communication-based predictors of masculinity–femininity ratings were identified using multiple regression, and analysis of variance was used to determine the effect of presentation mode on perceptual ratings. Results Fundamental frequency, average vowel formant, and sound pressure level were identified as significant predictors of masculinity–femininity ratings for these communicators. Communicators were rated significantly more feminine in the audio than the audiovisual mode and unreliably in the visual-only mode. Conclusions Both study purposes were met. Results support continued emphasis on fundamental frequency and vocal tract resonance in voice and communication modification training with transgender individuals and provide evidence for the potential benefit of modifying sound pressure level, especially when a masculine presentation is desired.


Sign in / Sign up

Export Citation Format

Share Document